Skip to content

Auto rechunk to enable blockwise reduction #380

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 65 additions & 9 deletions flox/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,15 @@
# _simple_combine.
DUMMY_AXIS = -2

# Thresholds below which we will automatically rechunk to blockwise if it makes sense
# 1. Fractional change in number of chunks after rechunking
BLOCKWISE_RECHUNK_NUM_CHUNKS_THRESHOLD = 0.25
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TODO: these should probably be in some kind of "options" context manager

# 2. Fractional change in max chunk size after rechunking
BLOCKWISE_RECHUNK_CHUNK_SIZE_THRESHOLD = 0.25
# 3. If input arrays have chunk size smaller than `dask.array.chunk-size`,
# then adjust chunks to meet that size first.
BLOCKWISE_DEFAULT_ARRAY_CHUNK_SIZE_FACTOR = 1.25

logger = logging.getLogger("flox")


Expand Down Expand Up @@ -223,8 +232,11 @@ def identity(x: T) -> T:
return x


def _issorted(arr: np.ndarray) -> bool:
return bool((arr[:-1] <= arr[1:]).all())
def _issorted(arr: np.ndarray, ascending=True) -> bool:
if ascending:
return bool((arr[:-1] <= arr[1:]).all())
else:
return bool((arr[:-1] >= arr[1:]).all())
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should add a test for descending



def _is_arg_reduction(func: T_Agg) -> bool:
Expand Down Expand Up @@ -325,6 +337,8 @@ def _get_optimal_chunks_for_groups(chunks, labels):
Δl = abs(c - l)
if c == 0 or newchunkidx[-1] > l:
continue
f = f.item() # noqa
l = l.item() # noqa
if Δf < Δl and f > newchunkidx[-1]:
newchunkidx.append(f)
else:
Expand Down Expand Up @@ -716,7 +730,9 @@ def rechunk_for_cohorts(
return array.rechunk({axis: newchunks})


def rechunk_for_blockwise(array: DaskArray, axis: T_Axis, labels: np.ndarray) -> DaskArray:
def rechunk_for_blockwise(
array: DaskArray, axis: T_Axis, labels: np.ndarray, *, force: bool = True
) -> tuple[T_MethodOpt, DaskArray]:
"""
Rechunks array so that group boundaries line up with chunk boundaries, allowing
embarrassingly parallel group reductions.
Expand All @@ -739,14 +755,43 @@ def rechunk_for_blockwise(array: DaskArray, axis: T_Axis, labels: np.ndarray) ->
DaskArray
Rechunked array
"""
# TODO: this should be unnecessary?
labels = factorize_((labels,), axes=())[0]

import dask
from dask.utils import parse_bytes

chunks = array.chunks[axis]
newchunks = _get_optimal_chunks_for_groups(chunks, labels)
if len(chunks) == 1:
return "blockwise", array

factor = parse_bytes(dask.config.get("array.chunk-size")) / (
math.prod(array.chunksize) * array.dtype.itemsize
)
if factor > BLOCKWISE_DEFAULT_ARRAY_CHUNK_SIZE_FACTOR:
new_constant_chunks = math.ceil(factor) * max(chunks)
q, r = divmod(array.shape[axis], new_constant_chunks)
new_input_chunks = (new_constant_chunks,) * q + (r,)
else:
new_input_chunks = chunks

# FIXME: this should be unnecessary?
labels = factorize_((labels,), axes=())[0]
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TODO: get rid of this line

newchunks = _get_optimal_chunks_for_groups(new_input_chunks, labels)
if newchunks == chunks:
return array
return "blockwise", array

Δn = abs(len(newchunks) - len(new_input_chunks))
if force or (
(Δn / len(new_input_chunks) < BLOCKWISE_RECHUNK_NUM_CHUNKS_THRESHOLD)
and (
abs(max(newchunks) - max(new_input_chunks)) / max(new_input_chunks)
< BLOCKWISE_RECHUNK_CHUNK_SIZE_THRESHOLD
)
):
logger.debug("Rechunking to enable blockwise.")
return "blockwise", array.rechunk({axis: newchunks})
else:
return array.rechunk({axis: newchunks})
logger.debug("Didn't meet thresholds to do automatic rechunking for blockwise reductions.")
return None, array


def reindex_numpy(array, from_: pd.Index, to: pd.Index, fill_value, dtype, axis: int):
Expand Down Expand Up @@ -2712,6 +2757,17 @@ def groupby_reduce(
has_dask = is_duck_dask_array(array) or is_duck_dask_array(by_)
has_cubed = is_duck_cubed_array(array) or is_duck_cubed_array(by_)

if (
method is None
and is_duck_dask_array(array)
and not any_by_dask
and by_.ndim == 1
and _issorted(by_, ascending=True)
):
# Let's try rechunking for sorted 1D by.
(single_axis,) = axis_
method, array = rechunk_for_blockwise(array, single_axis, by_, force=False)

is_first_last = _is_first_last_reduction(func)
if is_first_last:
if has_dask and nax != 1:
Expand Down Expand Up @@ -2899,7 +2955,7 @@ def groupby_reduce(

# if preferred method is already blockwise, no need to rechunk
if preferred_method != "blockwise" and method == "blockwise" and by_.ndim == 1:
array = rechunk_for_blockwise(array, axis=-1, labels=by_)
_, array = rechunk_for_blockwise(array, axis=-1, labels=by_)

result, groups = partial_agg(
array=array,
Expand Down
3 changes: 2 additions & 1 deletion flox/xarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

import numpy as np
import pandas as pd
import toolz
import xarray as xr
from packaging.version import Version

Expand Down Expand Up @@ -589,7 +590,7 @@ def rechunk_for_blockwise(obj: T_DataArray | T_Dataset, dim: str, labels: T_Data
DataArray or Dataset
Xarray object with rechunked arrays.
"""
return _rechunk(rechunk_array_for_blockwise, obj, dim, labels)
return _rechunk(toolz.compose(toolz.last, rechunk_array_for_blockwise), obj, dim, labels)


def _rechunk(func, obj, dim, labels, **kwargs):
Expand Down
Loading