Skip to content

Commit

Permalink
updated stochastic calculus
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Oct 10, 2023
1 parent e0582e0 commit 73538ad
Show file tree
Hide file tree
Showing 3 changed files with 79 additions and 22 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -93,10 +93,10 @@
$$
\det(\vf{A}^k-\vf{I})=({\lambda_+}^k-1)({\lambda_-}^k-1)\ne 0
$$
and so the equation $\vf{A}^k\vf{x}=\vf{x}+\vf{n}$ has a unique (rational) solution.
and so the equation $\vf{A}^k\vf{x}=\vf{x}+\vf{n}$ has a unique (rational) solution. Now let $(\frac{p_1}{q_1},\frac{p_2}{q_2})\in \quot{\QQ^2}{\ZZ^2}$ and $N\geq 1$ left to be chosen. We define the set $Q_N:=\frac{\ZZ^2}{N} \mod{\ZZ^2}$, which is a subset finite set of $T^2$. But observe that $Q_N$ is invariant under $\vf{\tilde{A}}$, and thus, all of its points are periodic. For the above rational numbers, just choose $N=q_1q_2$.
\end{proof}
\begin{remark}
The \emph{hyperbolicity} comes from the fact that there is one eigenvector with eigenvalue greater than $1$ and another with eigenvalue less than $1$.
The \emph{hyperbolicity} comes from the fact that there is one eigenvector with eigenvalue greater than $1$ and another with eigenvalue less than $1$, both eigenvalues being positive.
\end{remark}
\begin{theorem}
The iterates of $\vf{\tilde{A}}$ smear every domain $F\subseteq T^2$ uniformly over $T^2$, that is, for every domain $G\subseteq T^2$, we have that the following limit exists:
Expand Down Expand Up @@ -145,7 +145,19 @@
$$
\end{definition}
\begin{theorem}[Structal stability]
Let $\vf{B}$ be a diffeomorphism on $T^2$ $\mathcal{C}^1$-close to $\vf{\tilde{A}}$. Then, $\vf{B}$ is conjugate to $\vf{\tilde{A}}$.
Let $\vf{B}$ be a diffeomorphism on $T^2$ $\mathcal{C}^1$-close to $\vf{\tilde{A}}$. Then, $\vf{B}$ is $\mathcal{C}^0$-conjugate to $\vf{\tilde{A}}$.
\end{theorem}
\begin{definition}
A dynamical system $f : X\rightarrow X$ has \emph{sensitive dependence on initial conditions} on $X$ if $\exists\varepsilon >0$ such that for each $x\in X$ and any neighborhood $N_x$ of $x$, exists $y \in N_x$ and $n \geq 0$ such that $d(f^n(x),f^n(y)) > \varepsilon$.
\end{definition}
\begin{definition}
Let $U\subseteq \RR^n$, $\vf{f}:U\to U$ be a dynamical system and $\vf{x}\in U$ and $\vf{v}\in\RR^n$. We define the \emph{Lyapunov exponent} as:
$$
\chi(x,\vf{v}):=\limsup_{n\to\infty}\frac{1}{n}\log\norm{\vf{D}(\vf{f}^n)(x)\vf{v}}
$$
\end{definition}
\begin{remark}
The Lyapunov exponent measures the exponential growth rate of tangent vectors along orbits.
\end{remark}
\end{multicols}
\end{document}
69 changes: 56 additions & 13 deletions Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -797,31 +797,74 @@
\subsubsection{Introduction}
\begin{definition}
Let $X={(X_t)}_{t\geq 0}$ be a stochastic process and $b:\RR_{\geq 0}\times\RR\to \RR$ and $\sigma:\RR_{\geq 0}\times \RR$ be deterministic functions called \emph{drift} and \emph{diffusion}, respectively. A \emph{stochastic differential equation} (\emph{SDE}) is an equation of the form:
$$
\begin{equation}\label{SC:SDE_eq}
\dd{X_t}=b(t,X_t)\dd{t}+\sigma(t,X_t)\dd{B_t}
$$
\end{equation}
\end{definition}
\begin{definition}
Consider the following SDE:
$$
\dd{X_t}=b(t,X_t)\dd{t}+\sigma(t,X_t)\dd{B_t}
$$
We say that a progressive process $X={(X_t)}_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, {(\mathcal{F}_t)}_{t\geq 0}, \Prob)$ is a \emph{solution of the SDE} if ${(b(t,X_t))}_{t\geq 0}\in\MM^1_{\text{loc}}$ and ${(\sigma(t,X_t))}_{t\geq 0}\in\MM^2_{\text{loc}}$ and $\forall t\geq 0$:
Consider the SDE of \mcref{SC:SDE_eq}. We say that a progressive process $X={(X_t)}_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, {(\mathcal{F}_t)}_{t\geq 0}, \Prob)$ is a \emph{solution of the SDE} if ${(b(t,X_t))}_{t\geq 0}\in\MM^1_{\text{loc}}$ and ${(\sigma(t,X_t))}_{t\geq 0}\in\MM^2_{\text{loc}}$ and $\forall t\geq 0$:
$$
X_t=X_0+\int_0^t b(s,X_s)\dd{s}+\int_0^t \sigma(s,X_s)\dd{B_s}
$$
\end{definition}
\subsubsection{Existence and uniqueness of solutions}
\begin{theorem}[Existence and uniqueness]
Let $b:\RR_{\geq 0}\times\RR\to \RR$ be a measurable function satisfying:
\begin{lemma}[Gronwall's lemma]
Let ${(x_t)}_{t\in[0,T]}$ be a non-negative function in $L^1([0,T])$ satisfying that $\forall t\in[0,T]$:
$$
x_t\leq \alpha+\beta\int_0^t x_s\dd{s}
$$
for some constants $\alpha,\beta\geq 0$. Then, $x_t\leq \alpha\exp{\beta t}$ for all $t\in[0,T]$.
\end{lemma}
\begin{theorem}[Existence and uniqueness of solutions of SDEs]\label{SC:existence_uniqueness_SDE}
Let $b,\sigma:\RR_{\geq 0}\times\RR\to \RR$ be a measurable function satisfying:
\begin{itemize}
\item Uniform spatial Lipschitz continuity: $\exists C>0$ such that $\forall t\geq 0$ and $\forall x,y\in\RR$ we have: $$\abs{b(t,x)-b(t,y)}\leq C\abs{x-y}$$
\item Local integrability in time: $\forall t \geq 0$ we have: $$\int_0^t \abs{b(s,0)}\dd{s}<\infty$$
\item Uniform spatial Lipschitz continuity: $\exists C>0$ such that $\forall t\geq 0$ and $\forall x,y\in\RR$ we have:
\begin{align*}
\abs{b(t,x)-b(t,y)} & \leq C\abs{x-y} \\
\abs{\sigma(t,x)-\sigma(t,y)} & \leq C\abs{x-y}
\end{align*}
\item Local square-integrability in time: $\forall t \geq 0$ we have: $$\int_0^t \abs{b(s,0)}^2\dd{s}<\infty
\qquad \int_0^t \abs{\sigma(s,0)}^2\dd{s}<\infty
$$
\end{itemize}
Then, for each $z\in\RR$, there exists a unique measurable function $x={(x_t)}_{t\geq 0}$ such that $\forall t\geq 0$:
Then, for each initial condition $\zeta\in L^(\Omega,\mathcal{F}_0,\Prob)$, there exists a unique (up to indistinguishability) solution $X={(X_t)}_{t\geq 0}$ to the SDE of \mcref{SC:SDE_eq} with $X_0=\zeta$. Moreover, $X\in \MM^2$.
\end{theorem}
\begin{remark}
In the proof of the above theorem, which we omit here, it can be shown that
\begin{equation}\label{SC:expression_x_psi}
X_t=\Psi_t\left(\zeta,{(B_s)}_{s\in[0,t]}\right)
\end{equation}
for some measurable function $\Psi_t:\RR\times C([0,t],\RR)\to \RR$.
\end{remark}
\begin{remark}
The following SDE was proposed by Paul Langevin in 1908 to describe the random motion of a small particle in a fluid, due to collisions with the surrounding molecules:
$$
\dd{X_t}=-b X_t\dd{t}+\sigma\dd{B_t}
$$
with $b,\sigma>0$. \mnameref{SC:existence_uniqueness_SDE} implies that the solution is unique and that given $\zeta \in L^2(\Omega,\mathcal{F}_0,\Prob)$, the solution is given by:
$$
X_t= \zeta \exp{-bt}+\sigma\int_0^t \exp{-b(t-s)}\dd{B_s}
$$
Note that the long-term behavior of $X_t$ has law of $N(0,\frac{\sigma^2}{2b})$, independently of the initial condition $\zeta$.
\end{remark}
\subsubsection{Markov property for diffusions}
\begin{definition}
Let $b.\sigma:\RR\to\RR$ be two Lipschitz functions and consider the following \emph{homogeneous SDE}:
\begin{equation}\label{SC:homogeneous_SDE}
\begin{cases}
\dd{X_t}=b(X_t)\dd{t}+\sigma(X_t)\dd{B_t} \\
X_0=\zeta\in L^2(\Omega,\mathcal{F}_0,\Prob)
\end{cases}
\end{equation}
These kinds of problems are called \emph{diffusions}.
\end{definition}
\begin{theorem}[Invariance under time shift]
Let $X={(X_t)}_{t\geq 0}$ be a solution to the SDE of \mcref{SC:homogeneous_SDE} and assume we write $X_t$ as in \mcref{SC:expression_x_psi}. Then, for any $s,t\geq 0$ we have:
$$
x_t=z+\int_0^t b(s,x_s)\dd{s}
X_{t+s}=\Psi_{t}(X_s,{(B_{u+s}-B_s)}_{u\in[0,t]})
$$
\end{theorem}
\subsubsection{Generator of a diffusion}
\subsubsection{Connection with PDEs}
\end{multicols}
\end{document}
14 changes: 8 additions & 6 deletions Physics/Advanced/Fluid_mechanics/Fluid_mechanics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -527,12 +527,14 @@
\begin{remark}
This equation together with the continuity equation and energy equation completely describe the flow in a compressible viscous fluid. In the case of an incompressible homogeneous fluid with $\rho=\rho_0=\const$, the
complete set of equations becomes the \emph{Navier-Stokes equations for incompressible flow}:
$$
\begin{cases}
\displaystyle\matdv{\vf{u}}{t}=-\grad p' + \nu\laplacian\vf{u} \\
\displaystyle\div\vf{u}=0
\end{cases}
$$
\begin{important}
$$
\begin{cases}
\displaystyle\matdv{\vf{u}}{t}=-\grad p' + \nu\laplacian\vf{u} \\
\displaystyle\div\vf{u}=0
\end{cases}
$$
\end{important}
where $p'=p/\rho_0$ and $\nu=\mu/\rho_0$ is the \emph{kinematic viscosity}. To this we should add boundary condition, which for an ideal fluid we use $\vf{u}\cdot \vf{n}=0$ and if the solid wall that bounds the fluid is stationary, we use $\vf{u}=\vf{0}$ on the walls.
\end{remark}
\subsubsection{Reynolds number}
Expand Down

0 comments on commit 73538ad

Please sign in to comment.