Skip to content

Commit

Permalink
updated probability and stochastic calculus
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Oct 9, 2023
1 parent c2f1302 commit e0582e0
Show file tree
Hide file tree
Showing 2 changed files with 97 additions and 3 deletions.
2 changes: 1 addition & 1 deletion Mathematics/3rd/Probability/Probability.tex
Original file line number Diff line number Diff line change
Expand Up @@ -735,7 +735,7 @@
\begin{sproof}
Check the proof of \mnameref{RFA:dominated}.
\end{sproof}
\begin{theorem}[Fatou's lemma]
\begin{theorem}[Fatou's lemma]\label{P:fatou}
Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(X_n)$ be a sequence of non-negative random variables. Then: $$\Exp(\liminf_{n\to\infty}X_n)\leq \liminf_{n\to\infty}\Exp(X_n)$$
\end{theorem}
\begin{sproof}
Expand Down
98 changes: 96 additions & 2 deletions Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@
\item $\Exp(\abs{X_t})<\infty$ for all $t\geq 0$.
\item $\Exp(X_t\mid \mathcal{F}_s)=X_s$ for all $0\leq s\leq t$.
\end{enumerate}
The process is called a \emph{sub-martingale} if the last condition is replaced by $\Exp(X_t\mid \mathcal{F}_s)\geq X_s$ for all $0\leq s\leq t$ and a \emph{super-martingale} if $\Exp(X_t\mid \mathcal{F}_s)\leq X_s$ for all $0\leq s\leq t$.
\end{definition}
\begin{proposition}
Let $B={(B_t)}_{t\geq 0}$ be a Brownian motion. Then, the following processes are martingales ${(M_t)}_{t\geq 0}$ with respect to the natural filtration induced by $B$:
Expand Down Expand Up @@ -720,14 +721,107 @@
\end{equation*}
and the result follows from \mcref{SC:ito_process_martingale}.
\end{proof}
\begin{lemma}
\begin{lemma}\label{SC:preNovikov}
If $M$ is a non-negative local martingale, then $M$ is a super-martingale. Moreover, for $T\in \RR_{\geq 0}$, ${(M_t)}_{t\in[0,T]}$ is a martingale if and only if $\Exp(M_T)\geq \Exp(M_0)$.
\end{lemma}
\begin{proof}
Since $M$ is a local martingale with localizing sequence $(T_n)$, then $\forall t\geq 0$ we have that $\Exp(M_{t\wedge T_n}\mid \mathcal{F}_s )= M_{s\wedge T_n}$ and so:
$$
\begin{cases}
M_{s\wedge T_n} \overset{\text{a.s.}}{\underset{n\to\infty}{\longrightarrow}} M_s \\
M_{t \wedge T_n} \overset{\text{a.s.}}{\underset{n\to\infty}{\longrightarrow}} M_t
\end{cases}
$$
Now, by \mnameref{P:fatou} we have:
$$
\Exp(M_t\mid \mathcal{F}_s)\leq \liminf_{n\to\infty}\Exp(M_{t\wedge T_n}\mid \mathcal{F}_s)=\liminf_{n\to\infty}M_{s\wedge T_n}\!=M_s
$$
which shows that $M$ is a super-martingale. Now, fix $T\geq 0$, and suppose that $\Exp(M_T)\geq \Exp(M_0)$. This forces the non-increasing map $t\mapsto \Exp(M_t)$ to be constant on $[0,T]$. In particular, for any $0\leq s\leq t\leq T$, the non-negative variable $M_s-\Exp(M_t\mid \mathcal{F}_s)$ has zero mean, hence is null a.s.
\end{proof}
\begin{theorem}[Novikov's condition]
For ${(Z^\phi_s)}_{s\in[0,t]}$ to be a martingale, it suffices that:
Let $t\geq 0$ be fixed and assume that:
$$
\Exp\left(\exp{\frac{1}{2}\int_0^t{\phi_u}^2\dd{u}}\right)<\infty
$$
Then, ${(Z^\phi_s)}_{s\in[0,t]}$ is a martingale.
\end{theorem}
\begin{proof}
Fix $0<\varepsilon<1$. We have that for all $s\in[0,t]$:
$$
{\left( Z_s^{(1-\varepsilon)\phi}\right)}^{\frac{1}{1-\varepsilon^2}}={\left( Z_s^\phi\right)}^{\frac{1}{1+\varepsilon}}{\left(\exp{\frac{1}{2}\int_0^s \phi_u^2\dd{u}}\right)}^{\frac{\varepsilon}{1+\varepsilon}}
$$
Now, choosing $s=t\wedge T_n$, where $T_n$ is a localizing sequence for $Z^{(1-\varepsilon)\phi}$, taking expectation and using \mnameref{RFA:holder} we get:
\begin{align*}
\Exp\left[
{\left( Z_{t\wedge T_n}^{(1-\varepsilon)\phi}\right)}^{\frac{1}{1-\varepsilon^2}}
\right] & \leq \Exp{\left[
{ Z_{t\wedge T_n}^\phi}\right]}^{\frac{1}{1+\varepsilon}}\Exp{\left[
{\exp{\frac{1}{2}\int_0^{t\wedge T_n} \phi_u^2\dd{u}}}\right]}^{\frac{\varepsilon}{1+\varepsilon}} \\
& \leq \Exp{\left[
{\exp{\frac{1}{2}\int_0^{t} \phi_u^2\dd{u}}}\right]}^{\frac{\varepsilon}{1+\varepsilon}}
\end{align*}
because $\Exp{\left[
{ Z_{t\wedge T_n}^\phi}\right]}=1$. This implies that ${(Z_{t\wedge T_n}^{(1-\varepsilon)\phi})}$ is bounded in $L^p$ for $p=\frac{1}{\varepsilon^2}>1$. Thus:
$$
\Exp(Z_{t}^{(1-\varepsilon)\phi})=\lim_{n\to\infty}\Exp(Z_{t\wedge T_n}^{(1-\varepsilon)\phi})=1
$$
In particular, $\Exp\left[{\left( Z_{t}^{(1-\varepsilon)\phi}\right)}^{p}\right]\geq 1$ and so:
$$
1\leq \Exp{\left[
{ Z_{t}^\phi}\right]}^{\frac{1}{1+\varepsilon}}\Exp{\left[
{\exp{\frac{1}{2}\int_0^{t} \phi_u^2\dd{u}}}\right]}^{\frac{\varepsilon}{1+\varepsilon}}
$$
Taking $\varepsilon\to 0$, yields $\Exp(Z_t^\phi)\geq 1$, which suffices to conclude by \mcref{SC:preNovikov}.
\end{proof}
\subsubsection{Girsanov's theorem}
\begin{theorem}[Giranov's theorem]
Let $\phi\in\MM^2_{\text{loc}}$ and suppose its associated exponential local martingale ${(Z_t^\phi)}_{t\geq 0}$ is a martingale. Then, the formula
$$
\QQ(A):=\Exp(Z_t^\phi\indi{A})\qquad\forall A\in \mathcal{F}_t
$$
defines a probability measure on $(\Omega, \mathcal{F}_t)$, under which the process $X={(X_s)}_{s\in[0,t]}$ defined as
$$
X_s:=B_s-\int_0^s \phi_u\dd{u}
$$
is a ${(\mathcal{F}_s)}_{s\in[0,t]}$-Brownian motion.
\end{theorem}
\begin{remark}
Note that, by linearity we have that for ant $\mathcal{F}_t$-measurable non-negative random variable $Y$:
$$
\Exp_\QQ(Y)=\Exp(YZ_t^\phi)\qquad
\Exp(Y)=\Exp_\QQ\left(\frac{Y}{Z_t^\phi}\right)
$$
where $\Exp_\QQ$ denotes the expectation with respect to $\QQ$. This is useful for transferring computations between $\Prob$ and $\QQ$.
\end{remark}
\subsection{Stochastic differential equations}
\subsubsection{Introduction}
\begin{definition}
Let $X={(X_t)}_{t\geq 0}$ be a stochastic process and $b:\RR_{\geq 0}\times\RR\to \RR$ and $\sigma:\RR_{\geq 0}\times \RR$ be deterministic functions called \emph{drift} and \emph{diffusion}, respectively. A \emph{stochastic differential equation} (\emph{SDE}) is an equation of the form:
$$
\dd{X_t}=b(t,X_t)\dd{t}+\sigma(t,X_t)\dd{B_t}
$$
\end{definition}
\begin{definition}
Consider the following SDE:
$$
\dd{X_t}=b(t,X_t)\dd{t}+\sigma(t,X_t)\dd{B_t}
$$
We say that a progressive process $X={(X_t)}_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, {(\mathcal{F}_t)}_{t\geq 0}, \Prob)$ is a \emph{solution of the SDE} if ${(b(t,X_t))}_{t\geq 0}\in\MM^1_{\text{loc}}$ and ${(\sigma(t,X_t))}_{t\geq 0}\in\MM^2_{\text{loc}}$ and $\forall t\geq 0$:
$$
X_t=X_0+\int_0^t b(s,X_s)\dd{s}+\int_0^t \sigma(s,X_s)\dd{B_s}
$$
\end{definition}
\subsubsection{Existence and uniqueness of solutions}
\begin{theorem}[Existence and uniqueness]
Let $b:\RR_{\geq 0}\times\RR\to \RR$ be a measurable function satisfying:
\begin{itemize}
\item Uniform spatial Lipschitz continuity: $\exists C>0$ such that $\forall t\geq 0$ and $\forall x,y\in\RR$ we have: $$\abs{b(t,x)-b(t,y)}\leq C\abs{x-y}$$
\item Local integrability in time: $\forall t \geq 0$ we have: $$\int_0^t \abs{b(s,0)}\dd{s}<\infty$$
\end{itemize}
Then, for each $z\in\RR$, there exists a unique measurable function $x={(x_t)}_{t\geq 0}$ such that $\forall t\geq 0$:
$$
x_t=z+\int_0^t b(s,x_s)\dd{s}
$$
\end{theorem}
\end{multicols}
\end{document}

0 comments on commit e0582e0

Please sign in to comment.