-
Notifications
You must be signed in to change notification settings - Fork 307
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #78 from NishantTanwar/master
Added Segment Trees with Lazy Propagation in C++.
- Loading branch information
Showing
1 changed file
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
/** | ||
* In this code we have a very large array called arr, and very large set of operations | ||
* Operation #1: Increment the elements within range [i, j] with value val | ||
* Operation #2: Get max element within range [i, j] | ||
* Build tree: build_tree(1, 0, N-1) | ||
* Update tree: update_tree(1, 0, N-1, i, j, value) | ||
* Query tree: query_tree(1, 0, N-1, i, j) | ||
* Actual space required by the tree = 2*2^ceil(log_2(n)) - 1 | ||
*/ | ||
|
||
#include<iostream> | ||
#include<algorithm> | ||
using namespace std; | ||
|
||
#include<string.h> | ||
#include<math.h> | ||
|
||
#define N 20 | ||
#define MAX (1+(1<<6)) // Why? :D | ||
#define inf 0x7fffffff | ||
|
||
int arr[N]; | ||
int tree[MAX]; | ||
int lazy[MAX]; | ||
|
||
/** | ||
* Build and init tree | ||
*/ | ||
void build_tree(int node, int a, int b) { | ||
if(a > b) return; // Out of range | ||
|
||
if(a == b) { // Leaf node | ||
tree[node] = arr[a]; // Init value | ||
return; | ||
} | ||
|
||
build_tree(node*2, a, (a+b)/2); // Init left child | ||
build_tree(node*2+1, 1+(a+b)/2, b); // Init right child | ||
|
||
tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value | ||
} | ||
|
||
/** | ||
* Increment elements within range [i, j] with value value | ||
*/ | ||
void update_tree(int node, int a, int b, int i, int j, int value) { | ||
|
||
if(lazy[node] != 0) { // This node needs to be updated | ||
tree[node] += lazy[node]; // Update it | ||
|
||
if(a != b) { | ||
lazy[node*2] += lazy[node]; // Mark child as lazy | ||
lazy[node*2+1] += lazy[node]; // Mark child as lazy | ||
} | ||
|
||
lazy[node] = 0; // Reset it | ||
} | ||
|
||
if(a > b || a > j || b < i) // Current segment is not within range [i, j] | ||
return; | ||
|
||
if(a >= i && b <= j) { // Segment is fully within range | ||
tree[node] += value; | ||
|
||
if(a != b) { // Not leaf node | ||
lazy[node*2] += value; | ||
lazy[node*2+1] += value; | ||
} | ||
|
||
return; | ||
} | ||
|
||
update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child | ||
update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child | ||
|
||
tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value | ||
} | ||
|
||
/** | ||
* Query tree to get max element value within range [i, j] | ||
*/ | ||
int query_tree(int node, int a, int b, int i, int j) { | ||
|
||
if(a > b || a > j || b < i) return -inf; // Out of range | ||
|
||
if(lazy[node] != 0) { // This node needs to be updated | ||
tree[node] += lazy[node]; // Update it | ||
|
||
if(a != b) { | ||
lazy[node*2] += lazy[node]; // Mark child as lazy | ||
lazy[node*2+1] += lazy[node]; // Mark child as lazy | ||
} | ||
|
||
lazy[node] = 0; // Reset it | ||
} | ||
|
||
if(a >= i && b <= j) // Current segment is totally within range [i, j] | ||
return tree[node]; | ||
|
||
int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child | ||
int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child | ||
|
||
int res = max(q1, q2); // Return final result | ||
|
||
return res; | ||
} | ||
|
||
int main() { | ||
for(int i = 0; i < N; i++) arr[i] = 1; | ||
|
||
build_tree(1, 0, N-1); | ||
|
||
memset(lazy, 0, sizeof lazy); | ||
|
||
update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5. here 0, N-1 represent the current range. | ||
update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12. here 0, N-1 represent the current range. | ||
update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100. here 0, N-1 represent the current range. | ||
|
||
cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1] | ||
} |