Skip to content

Unifying training models #24

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions gt_gen_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def get_content_of_dir(dir_in):
"""

gt_all=os.listdir(dir_in)
gt_list=[file for file in gt_all if file.split('.')[ len(file.split('.'))-1 ]=='xml' ]
gt_list = [file for file in gt_all if os.path.splitext(file)[1] == '.xml']
return gt_list

def return_parent_contours(contours, hierarchy):
Expand Down Expand Up @@ -134,7 +134,7 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_

if dir_images:
ls_org_imgs = os.listdir(dir_images)
ls_org_imgs_stem = [item.split('.')[0] for item in ls_org_imgs]
ls_org_imgs_stem = [os.path.splitext(item)[0] for item in ls_org_imgs]
for index in tqdm(range(len(gt_list))):
#try:
tree1 = ET.parse(dir_in+'/'+gt_list[index], parser = ET.XMLParser(encoding = 'iso-8859-5'))
Expand Down Expand Up @@ -298,10 +298,10 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
img_poly = resize_image(img_poly, y_new, x_new)

try:
xml_file_stem = gt_list[index].split('-')[1].split('.')[0]
xml_file_stem = os.path.splitext(gt_list[index])[0]
cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly)
except:
xml_file_stem = gt_list[index].split('.')[0]
xml_file_stem = os.path.splitext(gt_list[index])[0]
cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly)

if dir_images:
Expand Down Expand Up @@ -757,10 +757,10 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
img_poly = resize_image(img_poly, y_new, x_new)

try:
xml_file_stem = gt_list[index].split('-')[1].split('.')[0]
xml_file_stem = os.path.splitext(gt_list[index])[0]
cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly)
except:
xml_file_stem = gt_list[index].split('.')[0]
xml_file_stem = os.path.splitext(gt_list[index])[0]
cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly)


Expand Down
6 changes: 3 additions & 3 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -374,7 +374,7 @@ def generate_arrays_from_folder_reading_order(classes_file_dir, modal_dir, batch
batchcount = 0
while True:
for i in all_labels_files:
file_name = i.split('.')[0]
file_name = os.path.splitext(i)[0]
img = cv2.imread(os.path.join(modal_dir,file_name+'.png'))

label_class = int( np.load(os.path.join(classes_file_dir,i)) )
Expand All @@ -401,7 +401,7 @@ def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_c

for i in range(c, c + batch_size): # initially from 0 to 16, c = 0.
try:
filename = n[i].split('.')[0]
filename = os.path.splitext(n[i])[0]

train_img = cv2.imread(img_folder + '/' + n[i]) / 255.
train_img = cv2.resize(train_img, (input_width, input_height),
Expand Down Expand Up @@ -667,7 +667,7 @@ def provide_patches(imgs_list_train, segs_list_train, dir_img, dir_seg, dir_flow

indexer = 0
for im, seg_i in tqdm(zip(imgs_list_train, segs_list_train)):
img_name = im.split('.')[0]
img_name = os.path.splitext(im)[0]
if task == "segmentation" or task == "binarization":
dir_of_label_file = os.path.join(dir_seg, img_name + '.png')
elif task=="enhancement":
Expand Down