@@ -817,16 +817,16 @@ def neutron_scattering(compound, *, density=None,
817
817
818
818
The scattering potential can be expressed as a scattering length
819
819
density (SLD). This is the number density of the scatterers
820
- (per $\AA^3$ ) times their scattering lengths, scaled to
821
- $10^6/\AA^2$ (with $1/\AA^2$ = $10^{5} \mathrm{fm}/\AA^3$ ).
820
+ (per |Ang^3| ) times their scattering lengths, scaled to
821
+ |1e-6/Ang^2| (with |1/Ang^2| = $10^{5}$ fm/|Ang^3| ).
822
822
Following the convention of Sears (1992), we define sld as
823
823
$\rho = \rho_{\rm re} - i \rho_{\rm im}$.
824
824
825
825
.. math::
826
826
827
- \rho_{\rm re} (10^6 / \AA ^2) &= 10 N \mathrm{Re}(b_c) \\
828
- \rho_{\rm im} (10^6 / \AA ^2) &= -10 N \mathrm{Im}(b_c) \\
829
- \rho_{\rm inc} (10^6 / \AA ^2) &= 10 N b_i
827
+ \rho_{\rm re} (10^6 / Å ^2) &= 10 N \mathrm{Re}(b_c) \\
828
+ \rho_{\rm im} (10^6 / Å ^2) &= -10 N \mathrm{Im}(b_c) \\
829
+ \rho_{\rm inc} (10^6 / Å ^2) &= 10 N b_i
830
830
831
831
Similarly, the macroscopic scattering cross section for the sample includes
832
832
number density:
@@ -871,39 +871,39 @@ def neutron_scattering(compound, *, density=None,
871
871
872
872
.. math::
873
873
874
- \rho_{\rm re}\,(\mu/\AA ^2) &= (N/\AA ^3)
874
+ \rho_{\rm re}\,(\mu/Å ^2) &= (N/Å ^3)
875
875
\, (\mathrm{Re}(b_c)\,{\rm fm})
876
- \, (10^{-5} \AA /{\rm\,fm})
876
+ \, (10^{-5} Å /{\rm\,fm})
877
877
\, (10^6\,\mu) \\
878
- \rho_{\rm im}\,(\mu/\AA ^2) &= (N/\AA ^3)
878
+ \rho_{\rm im}\,(\mu/Å ^2) &= (N/Å ^3)
879
879
\, (\sigma_a\,{\rm barn})
880
- \, (10^{-8}\,\AA ^2/{\rm barn}) / (2 \lambda\, \AA )
880
+ \, (10^{-8}\,Å ^2/{\rm barn}) / (2 \lambda\, Å )
881
881
\, (10^6\,\mu) \\
882
- &= (N/\AA ^3)
882
+ &= (N/Å ^3)
883
883
\, (-\mathrm{Im}(b_c)\,{\rm fm})
884
- \, (10^{-5} \AA /{\rm\,fm})
884
+ \, (10^{-5} Å /{\rm\,fm})
885
885
\, (10^6\,\mu) \\
886
- \rho_{\rm inc}\,(\mu/\AA ^2) &= (N/\AA ^3)
886
+ \rho_{\rm inc}\,(\mu/Å ^2) &= (N/Å ^3)
887
887
\, \sqrt{(\sigma_i\, {\rm barn})/(4 \pi)
888
888
\, (100\, {\rm fm}^2/{\rm barn})}
889
- \, (10^{-5}\, \AA /{\rm fm})
889
+ \, (10^{-5}\, Å /{\rm fm})
890
890
\, (10^6\, \mu) \\
891
- \Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/\AA ^3)
891
+ \Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/Å ^3)
892
892
\, (\sigma_c\, {\rm barn})
893
- \, (10^{-8}\, \AA ^2/{\rm barn})
894
- \, (10^8\, \AA /{\rm cm}) \\
895
- \Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/\AA ^3)
893
+ \, (10^{-8}\, Å ^2/{\rm barn})
894
+ \, (10^8\, Å /{\rm cm}) \\
895
+ \Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/Å ^3)
896
896
\,(\sigma_i\, {\rm barn})
897
- \, (10^{-8}\, \AA ^2/{\rm barn})
898
- \, (10^8\, \AA /{\rm cm}) \\
899
- \Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/\AA ^3)
897
+ \, (10^{-8}\, Å ^2/{\rm barn})
898
+ \, (10^8\, Å /{\rm cm}) \\
899
+ \Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/Å ^3)
900
900
\,(\sigma_a\,{\rm barn})
901
- \, (10^{-8}\, \AA ^2/{\rm barn})
902
- \, (10^8\, \AA /{\rm cm}) \\
903
- \Sigma_{\rm s}\,(1/{\rm cm}) &= (N/\AA ^3)
901
+ \, (10^{-8}\, Å ^2/{\rm barn})
902
+ \, (10^8\, Å /{\rm cm}) \\
903
+ \Sigma_{\rm s}\,(1/{\rm cm}) &= (N/Å ^3)
904
904
\,(\sigma_s\,{\rm barn})
905
- \, (10^{-8}\, \AA ^2/{\rm barn})
906
- \, (10^8\, \AA /{\rm cm}) \\
905
+ \, (10^{-8}\, Å ^2/{\rm barn})
906
+ \, (10^8\, Å /{\rm cm}) \\
907
907
t_u\,({\rm cm}) &= 1/(\Sigma_{\rm s}\, 1/{\rm cm}
908
908
\,+\, \Sigma_{\rm abs}\, 1/{\rm cm})
909
909
"""
@@ -1860,7 +1860,7 @@ def absorption_comparison_table(table=None, tol=None):
1860
1860
1861
1861
\sigma_a = -2 \lambda \mathrm{Im}(b_c) \cdot 1000
1862
1862
1863
- The wavelength $\lambda = 1.798 \AA$ is the neutron wavelength at which
1863
+ The wavelength $\lambda = 1.798$ |Ang| is the neutron wavelength at which
1864
1864
the absorption is tallied. The factor of 1000 transforms from
1865
1865
|Ang|\ |cdot|\ fm to barn.
1866
1866
0 commit comments