Skip to content

Commit

Permalink
update readthedocs configuration
Browse files Browse the repository at this point in the history
  • Loading branch information
Paul Kienzle committed Dec 6, 2024
1 parent befa44e commit 65441cd
Showing 1 changed file with 26 additions and 26 deletions.
52 changes: 26 additions & 26 deletions periodictable/nsf.py
Original file line number Diff line number Diff line change
Expand Up @@ -817,16 +817,16 @@ def neutron_scattering(compound, *, density=None,
The scattering potential can be expressed as a scattering length
density (SLD). This is the number density of the scatterers
(per $\AA^3$) times their scattering lengths, scaled to
$10^6/\AA^2$ (with $1/\AA^2$ = $10^{5} \mathrm{fm}/\AA^3$).
(per |Ang^3|) times their scattering lengths, scaled to
|1e-6/Ang^2| (with |1/Ang^2| = $10^{5}$ fm/|Ang^3|).
Following the convention of Sears (1992), we define sld as
$\rho = \rho_{\rm re} - i \rho_{\rm im}$.
.. math::
\rho_{\rm re} (10^6 / \AA^2) &= 10 N \mathrm{Re}(b_c) \\
\rho_{\rm im} (10^6 / \AA^2) &= -10 N \mathrm{Im}(b_c) \\
\rho_{\rm inc} (10^6 / \AA^2) &= 10 N b_i
\rho_{\rm re} (10^6 / Å^2) &= 10 N \mathrm{Re}(b_c) \\
\rho_{\rm im} (10^6 / Å^2) &= -10 N \mathrm{Im}(b_c) \\
\rho_{\rm inc} (10^6 / Å^2) &= 10 N b_i
Similarly, the macroscopic scattering cross section for the sample includes
number density:
Expand Down Expand Up @@ -871,39 +871,39 @@ def neutron_scattering(compound, *, density=None,
.. math::
\rho_{\rm re}\,(\mu/\AA^2) &= (N/\AA^3)
\rho_{\rm re}\,(\mu/Å^2) &= (N/Å^3)
\, (\mathrm{Re}(b_c)\,{\rm fm})
\, (10^{-5} \AA/{\rm\,fm})
\, (10^{-5} Å/{\rm\,fm})
\, (10^6\,\mu) \\
\rho_{\rm im}\,(\mu/\AA^2) &= (N/\AA^3)
\rho_{\rm im}\,(\mu/Å^2) &= (N/Å^3)
\, (\sigma_a\,{\rm barn})
\, (10^{-8}\,\AA^2/{\rm barn}) / (2 \lambda\, \AA)
\, (10^{-8}\,Å^2/{\rm barn}) / (2 \lambda\, Å)
\, (10^6\,\mu) \\
&= (N/\AA^3)
&= (N/Å^3)
\, (-\mathrm{Im}(b_c)\,{\rm fm})
\, (10^{-5} \AA/{\rm\,fm})
\, (10^{-5} Å/{\rm\,fm})
\, (10^6\,\mu) \\
\rho_{\rm inc}\,(\mu/\AA^2) &= (N/\AA^3)
\rho_{\rm inc}\,(\mu/Å^2) &= (N/Å^3)
\, \sqrt{(\sigma_i\, {\rm barn})/(4 \pi)
\, (100\, {\rm fm}^2/{\rm barn})}
\, (10^{-5}\, \AA/{\rm fm})
\, (10^{-5}\, Å/{\rm fm})
\, (10^6\, \mu) \\
\Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/\AA^3)
\Sigma_{\rm coh}\,(1/{\rm cm}) &= (N/Å^3)
\, (\sigma_c\, {\rm barn})
\, (10^{-8}\, \AA^2/{\rm barn})
\, (10^8\, \AA/{\rm cm}) \\
\Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/\AA^3)
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
\Sigma_{\rm inc}\,(1/{\rm cm}) &= (N/Å^3)
\,(\sigma_i\, {\rm barn})
\, (10^{-8}\, \AA^2/{\rm barn})
\, (10^8\, \AA/{\rm cm}) \\
\Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/\AA^3)
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
\Sigma_{\rm abs}\,(1/{\rm cm}) &= (N/Å^3)
\,(\sigma_a\,{\rm barn})
\, (10^{-8}\, \AA^2/{\rm barn})
\, (10^8\, \AA/{\rm cm}) \\
\Sigma_{\rm s}\,(1/{\rm cm}) &= (N/\AA^3)
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
\Sigma_{\rm s}\,(1/{\rm cm}) &= (N/Å^3)
\,(\sigma_s\,{\rm barn})
\, (10^{-8}\, \AA^2/{\rm barn})
\, (10^8\, \AA/{\rm cm}) \\
\, (10^{-8}\, Å^2/{\rm barn})
\, (10^8\, Å/{\rm cm}) \\
t_u\,({\rm cm}) &= 1/(\Sigma_{\rm s}\, 1/{\rm cm}
\,+\, \Sigma_{\rm abs}\, 1/{\rm cm})
"""
Expand Down Expand Up @@ -1860,7 +1860,7 @@ def absorption_comparison_table(table=None, tol=None):
\sigma_a = -2 \lambda \mathrm{Im}(b_c) \cdot 1000
The wavelength $\lambda = 1.798 \AA$ is the neutron wavelength at which
The wavelength $\lambda = 1.798$ |Ang| is the neutron wavelength at which
the absorption is tallied. The factor of 1000 transforms from
|Ang|\ |cdot|\ fm to barn.
Expand Down

0 comments on commit 65441cd

Please sign in to comment.