Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Mathlib/Combinatorics/Enumerative/Partition/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ theorem toFinsuppAntidiag_injective (n : ℕ) : Function.Injective (toFinsuppAnt
theorem toFinsuppAntidiag_mem_finsuppAntidiag {n : ℕ} (p : Partition n) :
p.toFinsuppAntidiag ∈ (Finset.Icc 1 n).finsuppAntidiag n := by
have hp : p.parts.toFinset ⊆ Finset.Icc 1 n := by
grind [Multiset.mem_toFinset, Finset.mem_Icc]
grind [Finset.mem_Icc]
suffices ∑ m ∈ Finset.Icc 1 n, Multiset.count m p.parts * m = n by simpa [toFinsuppAntidiag, hp]
convert ← p.parts_sum
rw [Finset.sum_multiset_count]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Combinatorics/Enumerative/Partition/GenFun.lean
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ private theorem aux_prod_f_eq_prod_coeff (f : ℕ → ℕ → R) {n : ℕ} (p :
∏ i ∈ s, coeff (p.toFinsuppAntidiag i) (1 + ∑' j, f i (j + 1) • X ^ (i * (j + 1))) := by
simp_rw [Finsupp.prod, Multiset.toFinsupp_support, Multiset.toFinsupp_apply]
apply prod_subset_one_on_sdiff
· grind [Multiset.mem_toFinset, mem_Icc]
· grind [mem_Icc]
· intro x hx
rw [mem_sdiff, Multiset.mem_toFinset] at hx
have hx0 : x ≠ 0 := fun h ↦ hs0 (h ▸ hx.1)
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Finset/Dedup.lean
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ theorem Nodup.toFinset_inj {l l' : Multiset α} (hl : Nodup l) (hl' : Nodup l')
(h : l.toFinset = l'.toFinset) : l = l' := by
simpa [← toFinset_eq hl, ← toFinset_eq hl'] using h

@[simp]
@[simp, grind =]
theorem mem_toFinset {a : α} {s : Multiset α} : a ∈ s.toFinset ↔ a ∈ s :=
mem_dedup

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Fintype/Sets.lean
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def toFinset (s : Set α) [Fintype s] : Finset α :=
theorem toFinset_congr {s t : Set α} [Fintype s] [Fintype t] (h : s = t) :
toFinset s = toFinset t := by subst h; congr!

@[simp]
@[simp, grind =]
theorem mem_toFinset {s : Set α} [Fintype s] {a : α} : a ∈ s.toFinset ↔ a ∈ s := by
simp [toFinset]

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Topology/Algebra/InfiniteSum/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ theorem hasProd_fintype_support [Fintype β] (f : β → α) (L : SummationFilte
filter_upwards [h1, h2] with s hs hs'
congr 1
simp only [Set.mem_iInter, Set.mem_setOf_eq, Set.mem_compl_iff] at hs hs'
grind [Set.mem_toFinset]
grind

@[to_additive]
theorem hasProd_fintype [Fintype β] (f : β → α) (L := unconditional β) [L.LeAtTop] :
Expand Down