Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Port v1.5.2 bugfixes into dev-v2.0.0 #329

Merged
merged 9 commits into from
Dec 16, 2024
Merged
14 changes: 7 additions & 7 deletions hippunfold/pipeline_description.json
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,11 @@
"DatasetType": "derivative",
"GeneratedBy": [
{
"Name": "hippunfold",
"Version": "1.5.4",
"CodeURL": "https://github.com/khanlab/hippunfold",
"Author": "Jordan DeKraker & Ali Khan",
"AuthorEmail": "[email protected]"
}
]
"Name": "hippunfold",
"Version": "1.5.2-pre.2",
"CodeURL": "https://github.com/khanlab/hippunfold",
"Author": "Jordan DeKraker & Ali Khan",
"AuthorEmail": "[email protected]"
}
]
}
2 changes: 1 addition & 1 deletion hippunfold/workflow/rules/gifti.smk
Original file line number Diff line number Diff line change
Expand Up @@ -978,7 +978,7 @@ rule normalize_curvature2:
space="{space}",
hemi="{hemi}",
desc="unnorm",
label="hipp",
label="{autotop}",
**inputs.subj_wildcards
),
output:
Expand Down
69 changes: 42 additions & 27 deletions hippunfold/workflow/rules/nnunet.smk
Original file line number Diff line number Diff line change
Expand Up @@ -2,32 +2,35 @@ import re


def get_nnunet_input(wildcards):
if config["modality"] == "T2w":
nii = (
bids(
root=work,
datatype="anat",
**inputs.subj_wildcards,
suffix="T2w.nii.gz",
space="corobl",
desc="preproc",
hemi="{hemi}",
),
)
T1w_nii = bids(
root=work,
datatype="anat",
space="corobl",
desc="preproc",
hemi="{hemi}",
suffix="T1w.nii.gz",
**inputs.subj_wildcards,
)
T2w_nii = bids(
root=work,
datatype="anat",
space="corobl",
desc="preproc",
hemi="{hemi}",
suffix="T2w.nii.gz",
**inputs.subj_wildcards,
)
if (config["modality"] == "T1w" or config["modality"] == "T2w") and config[
"force_nnunet_model"
] == "T1T2w":
return (T1w_nii, T2w_nii)

elif config["modality"] == "T2w":
return T2w_nii
elif config["modality"] == "T1w":
nii = (
bids(
root=work,
datatype="anat",
**inputs.subj_wildcards,
suffix="T1w.nii.gz",
space="corobl",
desc="preproc",
hemi="{hemi}",
),
)
return T1w_nii
elif config["modality"] == "hippb500":
nii = bids(
return bids(
root=work,
datatype="dwi",
hemi="{hemi}",
Expand All @@ -37,7 +40,6 @@ def get_nnunet_input(wildcards):
)
else:
raise ValueError("modality not supported for nnunet!")
return nii


def get_model_tar():
Expand Down Expand Up @@ -94,14 +96,27 @@ def parse_trainer_from_tar(wildcards, input):
return trainer


def get_cmd_copy_inputs(wildcards, input):
in_img = input.in_img
if isinstance(in_img, str):
# we have one input image
return f"cp {in_img} tempimg/temp_0000.nii.gz"
else:
cmd = []
# we have multiple input images
for i, img in enumerate(input.in_img):
cmd.append(f"cp {img} tempimg/temp_{i:04d}.nii.gz")
return " && ".join(cmd)


rule run_inference:
""" This rule uses either GPU or CPU .
It also runs in an isolated folder (shadow), with symlinks to inputs in that folder, copying over outputs once complete, so temp files are not retained"""
input:
in_img=get_nnunet_input,
model_tar=get_model_tar(),
params:
temp_img="tempimg/temp_0000.nii.gz",
cmd_copy_inputs=get_cmd_copy_inputs,
temp_lbl="templbl/temp.nii.gz",
model_dir="tempmodel",
in_folder="tempimg",
Expand Down Expand Up @@ -148,7 +163,7 @@ rule run_inference:
# run inference
#copy from temp output folder to final output
"mkdir -p {params.model_dir} {params.in_folder} {params.out_folder} && "
"cp {input.in_img} {params.temp_img} && "
"{params.cmd_copy_inputs} && "
"tar -xf {input.model_tar} -C {params.model_dir} && "
"export RESULTS_FOLDER={params.model_dir} && "
"export nnUNet_n_proc_DA={threads} && "
Expand Down
Loading