Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Agents: Small fixes in streaming to gradio + add tests #34549

Merged
merged 5 commits into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions src/transformers/agents/agents.py
Original file line number Diff line number Diff line change
Expand Up @@ -1141,11 +1141,10 @@ def step(self):
)
self.logger.warning("Print outputs:")
self.logger.log(32, self.state["print_outputs"])
observation = "Print outputs:\n" + self.state["print_outputs"]
if result is not None:
self.logger.warning("Last output from code snippet:")
self.logger.log(32, str(result))
observation = "Print outputs:\n" + self.state["print_outputs"]
if result is not None:
observation += "Last output from code snippet:\n" + str(result)[:100000]
current_step_logs["observation"] = observation
except Exception as e:
Expand Down
42 changes: 30 additions & 12 deletions src/transformers/agents/monitoring.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,19 @@
from .agents import ReactAgent


def pull_message(step_log: dict):
def pull_message(step_log: dict, test_mode: bool = True):
try:
from gradio import ChatMessage
except ImportError:
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
if test_mode:

class ChatMessage:
def __init__(self, role, content, metadata=None):
self.role = role
self.content = content
self.metadata = metadata
else:
raise ImportError("Gradio should be installed in order to launch a gradio demo.")

if step_log.get("rationale"):
yield ChatMessage(role="assistant", content=step_log["rationale"])
Expand All @@ -46,30 +54,40 @@ def pull_message(step_log: dict):
)


def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
def stream_to_gradio(agent: ReactAgent, task: str, test_mode: bool = False, **kwargs):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""

try:
from gradio import ChatMessage
except ImportError:
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
if test_mode:

class ChatMessage:
def __init__(self, role, content, metadata=None):
self.role = role
self.content = content
self.metadata = metadata
else:
raise ImportError("Gradio should be installed in order to launch a gradio demo.")

for step_log in agent.run(task, stream=True, **kwargs):
if isinstance(step_log, dict):
for message in pull_message(step_log):
for message in pull_message(step_log, test_mode=test_mode):
yield message

if isinstance(step_log, AgentText):
yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{step_log.to_string()}\n```")
elif isinstance(step_log, AgentImage):
final_answer = step_log # Last log is the run's final_answer

if isinstance(final_answer, AgentText):
yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{final_answer.to_string()}\n```")
elif isinstance(final_answer, AgentImage):
yield ChatMessage(
role="assistant",
content={"path": step_log.to_string(), "mime_type": "image/png"},
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(step_log, AgentAudio):
elif isinstance(final_answer, AgentAudio):
yield ChatMessage(
role="assistant",
content={"path": step_log.to_string(), "mime_type": "audio/wav"},
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield ChatMessage(role="assistant", content=str(step_log))
yield ChatMessage(role="assistant", content=str(final_answer))
36 changes: 15 additions & 21 deletions src/transformers/agents/python_interpreter.py
Original file line number Diff line number Diff line change
Expand Up @@ -848,6 +848,13 @@ def evaluate_ast(
raise InterpreterError(f"{expression.__class__.__name__} is not supported.")


def truncate_print_outputs(print_outputs: str, max_len_outputs: int = MAX_LEN_OUTPUT) -> str:
if len(print_outputs) < max_len_outputs:
return print_outputs
else:
return f"Print outputs:\n{print_outputs[:max_len_outputs]}\n_Print outputs have been truncated over the limit of {max_len_outputs} characters._\n"


def evaluate_python_code(
code: str,
static_tools: Optional[Dict[str, Callable]] = None,
Expand Down Expand Up @@ -890,25 +897,12 @@ def evaluate_python_code(
PRINT_OUTPUTS = ""
global OPERATIONS_COUNT
OPERATIONS_COUNT = 0
for node in expression.body:
try:
try:
for node in expression.body:
result = evaluate_ast(node, state, static_tools, custom_tools, authorized_imports)
except InterpreterError as e:
msg = ""
if len(PRINT_OUTPUTS) > 0:
if len(PRINT_OUTPUTS) < MAX_LEN_OUTPUT:
msg += f"Print outputs:\n{PRINT_OUTPUTS}\n====\n"
else:
msg += f"Print outputs:\n{PRINT_OUTPUTS[:MAX_LEN_OUTPUT]}\n_Print outputs were over {MAX_LEN_OUTPUT} characters, so they have been truncated._\n====\n"
msg += f"EXECUTION FAILED:\nEvaluation stopped at line '{ast.get_source_segment(code, node)}' because of the following error:\n{e}"
raise InterpreterError(msg)
finally:
if len(PRINT_OUTPUTS) < MAX_LEN_OUTPUT:
state["print_outputs"] = PRINT_OUTPUTS
else:
state["print_outputs"] = (
PRINT_OUTPUTS[:MAX_LEN_OUTPUT]
+ f"\n_Print outputs were over {MAX_LEN_OUTPUT} characters, so they have been truncated._"
)

return result
state["print_outputs"] = truncate_print_outputs(PRINT_OUTPUTS, max_len_outputs=MAX_LEN_OUTPUT)
return result
except InterpreterError as e:
msg = truncate_print_outputs(PRINT_OUTPUTS, max_len_outputs=MAX_LEN_OUTPUT)
msg += f"EXECUTION FAILED:\nEvaluation stopped at line '{ast.get_source_segment(code, node)}' because of the following error:\n{e}"
raise InterpreterError(msg)
16 changes: 10 additions & 6 deletions src/transformers/agents/tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import base64
import importlib
import inspect
Expand Down Expand Up @@ -141,15 +142,19 @@ def validate_arguments(self, do_validate_forward: bool = True):
required_attributes = {
"description": str,
"name": str,
"inputs": Dict,
"inputs": dict,
"output_type": str,
}
authorized_types = ["string", "integer", "number", "image", "audio", "any", "boolean"]

for attr, expected_type in required_attributes.items():
attr_value = getattr(self, attr, None)
if attr_value is None:
raise TypeError(f"You must set an attribute {attr}.")
if not isinstance(attr_value, expected_type):
raise TypeError(f"You must set an attribute {attr} of type {expected_type.__name__}.")
raise TypeError(
f"Attribute {attr} should have type {expected_type.__name__}, got {type(attr_value)} instead."
)
for input_name, input_content in self.inputs.items():
assert isinstance(input_content, dict), f"Input '{input_name}' should be a dictionary."
assert (
Expand Down Expand Up @@ -248,7 +253,6 @@ def save(self, output_dir):
def from_hub(
cls,
repo_id: str,
model_repo_id: Optional[str] = None,
token: Optional[str] = None,
**kwargs,
):
Expand All @@ -266,9 +270,6 @@ def from_hub(
Args:
repo_id (`str`):
The name of the repo on the Hub where your tool is defined.
model_repo_id (`str`, *optional*):
If your tool uses a model and you want to use a different model than the default, you can pass a second
repo ID or an endpoint url to this argument.
token (`str`, *optional*):
The token to identify you on hf.co. If unset, will use the token generated when running
`huggingface-cli login` (stored in `~/.huggingface`).
Expand Down Expand Up @@ -354,6 +355,9 @@ def from_hub(
if tool_class.output_type != custom_tool["output_type"]:
tool_class.output_type = custom_tool["output_type"]

if not isinstance(tool_class.inputs, dict):
tool_class.inputs = ast.literal_eval(tool_class.inputs)

return tool_class(**kwargs)

def push_to_hub(
Expand Down
82 changes: 82 additions & 0 deletions tests/agents/test_monitoring.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers.agents.agent_types import AgentImage
from transformers.agents.agents import AgentError, ReactCodeAgent, ReactJsonAgent
from transformers.agents.monitoring import stream_to_gradio


class MonitoringTester(unittest.TestCase):
def test_streaming_agent_text_output(self):
def dummy_llm_engine(prompt, **kwargs):
return """
Code:
````
final_answer('This is the final answer.')
```"""

agent = ReactCodeAgent(
tools=[],
llm_engine=dummy_llm_engine,
max_iterations=1,
)

# Use stream_to_gradio to capture the output
outputs = list(stream_to_gradio(agent, task="Test task", test_mode=True))

self.assertEqual(len(outputs), 3)
final_message = outputs[-1]
self.assertEqual(final_message.role, "assistant")
self.assertIn("This is the final answer.", final_message.content)

def test_streaming_agent_image_output(self):
def dummy_llm_engine(prompt, **kwargs):
return 'Action:{"action": "final_answer", "action_input": {"answer": "image"}}'

agent = ReactJsonAgent(
tools=[],
llm_engine=dummy_llm_engine,
max_iterations=1,
)

# Use stream_to_gradio to capture the output
outputs = list(stream_to_gradio(agent, task="Test task", image=AgentImage(value="path.png"), test_mode=True))

self.assertEqual(len(outputs), 2)
final_message = outputs[-1]
self.assertEqual(final_message.role, "assistant")
self.assertIsInstance(final_message.content, dict)
self.assertEqual(final_message.content["path"], "path.png")
self.assertEqual(final_message.content["mime_type"], "image/png")

def test_streaming_with_agent_error(self):
def dummy_llm_engine(prompt, **kwargs):
raise AgentError("Simulated agent error")

agent = ReactCodeAgent(
tools=[],
llm_engine=dummy_llm_engine,
max_iterations=1,
)

# Use stream_to_gradio to capture the output
outputs = list(stream_to_gradio(agent, task="Test task", test_mode=True))

self.assertEqual(len(outputs), 3)
final_message = outputs[-1]
self.assertEqual(final_message.role, "assistant")
self.assertIn("Simulated agent error", final_message.content)
Loading