- Background Materials
- Linear Algebra
- Probability
- [Numerical Computation] (https://docs.google.com/presentation/d/1Nt9vr-8_Tcgez8jmz7sPsbXc0PDpU0d04-f2MFR5XZg/edit?usp=sharing)
- Machine Learning Basics
- [Concepts, Capacity, Estimators, Linear Regression] (https://docs.google.com/presentation/d/1Xn6FaPiGTLnCRKQjIXySxpdteLVT1F8WDFketIUiTlI/edit?usp=sharing)
- [MLE, Bayesian, Other ML Algorithms] (https://docs.google.com/presentation/d/1Dp2IBWnxQmKMszX0uL5HSfK302q6kpMfiexYAoT9z-k/edit?usp=sharing)
- [Stochastic Gradient Descent, etc] (https://docs.google.com/presentation/d/1Ss2BhwyarFGFiEIgqbQ-CW9zq0LJxmaOcHZKMzRWJ5k/edit?usp=sharing)
- Deep Neural Networks
- [Regularization] (https://docs.google.com/presentation/d/1lg4oxRDvfUIEtzMJ7E-Lqv1cDNiwoNeT1r5T-XnFIQI/edit?usp=sharing)
- Optimization
- Convolutional Neural Networks
- Recurrent Neural Networks
- RNN
- GRU
- LSTM
Tensorflow (tf) Experiments
- Hello World!
- Linear Algebra
- Matrix Decomposition
- Probability Distributions using TensorBoard
- Linear Regression by PseudoInverse
- Linear Regression by Gradient Descent
- Under Fitting in Linear Regression
- Optimal Fitting in Linear Regression
- Over Fitting in Linear Regression
- Nearest Neighbor
- Principal Component Analysis
- Logical Ops by a 2-layer NN (MSE)
- Logical Ops by a 2-layer NN (Cross Entropy)
- NotMNIST Deep Feedforward Network: Code for NN and Code for Pickle