Skip to content

roatienza/Deep-Learning-Experiments

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Lecture Notes and Experiments

2025 Version

Revised and expanded

Theory

Topic Note Video Code
Overview PDF - -
Supervised Learning PDF - -
Multilayer Perceptron (MLP) PDF - Notebook
Convolutional Neural Network (CNN) PDF - Notebook
Recurrent Neural Network (RNN) PDF - Notebook
Transformer PDF - Notebook
Mamba PDF - SimpleMamba
Mamba2
Optimization PDF - -
Regularization PDF - -
Detection PDF - -
Segmentation PDF - SAM2
Autoencoder (AE) PDF - AE & Denoising AE
Colorization AE
Variational Autoencoder (VAE) PDF - VAE and CVAE
Generative Adversarial Network (GAN) PDF - DCGAN and CGAN
Diffusion Model - - DM
Intro to Large Language Models (LLMs) PDF - GPT2-TS-train, GPT2-TS-val
LLM Data and Model PDF - GPT2-TS-ft, GPT2-TS-ft-val

Practice

Topic Note Video Code
Development Environment PDF - -
Python PDF - -
Numpy PDF - -
Einsum PDF - Notebook
Einops PDF - Notebook
PyTorch PDF - -
Gradio PDF - Notebook
Llama Chat
Efficiency PDF - Code
PyTorch Lightning PDF - Notebook
Model Packaging & Serving PDF - ONNX Export
ONNX Runtime
TorchScript & TensorRT
PyTriton Yolo Client
PyTriton Yolo Server
Docker PDF = -
HuggingFcae PDF - -

Install

Assuming you already have anaconda or venv, install the required python packages to run the experiments in this version.

pip install -r requirements.txt --upgrade

Star, Fork, Cite

If you find this work useful, please give it a star, fork, or cite:

@misc{atienza2020dl,
  title={Deep Learning Lecture Notes},
  author={Atienza, Rowel},
  year={2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/roatienza/Deep-Learning-Experiments}},
}

About

Videos, notes and experiments to understand deep learning

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •