-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add python program to extract data and plot graphs
- Loading branch information
1 parent
1465e0f
commit 7b00ace
Showing
2 changed files
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
arr = [input().split("|") for i in range(15)] | ||
|
||
import re | ||
res = [] | ||
for i in arr: | ||
res.append([]) | ||
res[-1].append(i[0].strip()) | ||
for j in range(1, len(i)): | ||
res[-1].extend(re.split(r"\s",i[j].strip())) | ||
|
||
print(" |", end="") | ||
for i in range(1, 10): | ||
print(f" {i} ", end="|") | ||
|
||
print() | ||
print(" |", end="") | ||
for i in range(1, 10): | ||
print(f" H L ", end="|") | ||
|
||
print() | ||
for i in res: | ||
print(f"{i[0]:24}", end=",") | ||
for j in range(1, len(i)): | ||
if i[j] != "": print(f"{i[j]:6}", end=",") | ||
print() | ||
|
||
|
||
######################################################################################## | ||
### EXCEL formula ### | ||
|
||
# =SUM(B26:B40) | ||
# =SUM(C26:C40) | ||
|
||
# =MIN(B42,D42,F42,H42,J42,L42,N42,P42,R42) | ||
# =MIN(C42,E42,G42,I42,K42,M42,O42,Q42,S42) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
|
||
# INPUT | ||
names = np.array(["std::sort", "pdqsort", "std::stable_sort", "spinsort", "flat_stable_sort", "spreadsort", "timsort", "skasort", "fm_sort\noptimization"])[::-1] | ||
Averages = [174.19, 30.06, 104.68, 20.04, 152.71, 151.56, 86.94, 59.96, 70.32, 50.75, 61.38, 17.42, 77.88, 67.69, 42.41, 27.85, 27.55, 10.08][::-1] | ||
range_limit = 1000 | ||
graph_title = 'Array size = 2.98 GB\nArray length = 781250\nObject size = 4 K bytes = vector<uint64_t>[512]' | ||
y_label_name = f'Running time - normalized to range[0, {range_limit}]' | ||
|
||
names2 = [] | ||
for i in names: | ||
names2.append(i) | ||
names2.append(i) | ||
|
||
v1 = np.array(Averages[::2]) | ||
v2 = np.array(Averages[1::2]) | ||
v1 = v1 * range_limit / v1.max() | ||
v2 = v2 * range_limit / v2.max() | ||
|
||
p1 = pd.DataFrame([names, v1]).T | ||
p2 = pd.DataFrame([names, v2]).T | ||
p3 = pd.DataFrame([names2, Averages, len(names)*["Light comparison","Heavy comparison"]], index=["Sorting technique", "Average execution time" ,"Data comparision type"]).T | ||
p3["Average execution time"] = p3["Average execution time"] * range_limit / p3["Average execution time"].max() | ||
|
||
# GRAPH type 1 | ||
x_pos = range(len(names)) | ||
plt.bar(x_pos, v1) | ||
plt.xticks(x_pos, names) | ||
plt.yticks(range(0, range_limit+1, range_limit//10), [str(i) for i in range(0, range_limit+1, range_limit//10)]) | ||
plt.ylabel(y_label_name) | ||
plt.title(graph_title) | ||
plt.show() | ||
|
||
# GRAPH type 2 | ||
sns.set(style="whitegrid") | ||
ax = sns.barplot(x="Sorting technique", y="Average execution time", hue="Data comparision type", data=p3, palette=sns.color_palette("coolwarm", 17)[0::16] ) | ||
# ax.axhline(0, color="k", clip_on=False) | ||
|
||
for p in ax.patches: | ||
ax.annotate(f"{p.get_height():.0f}", (p.get_x() * 1.005, p.get_height() * 1.005)) | ||
|
||
# for ticks in ax.xaxis.get_major_ticks(): | ||
# if ticks.label1.get_text() == names[-1]: | ||
# # ticks.label1.set_facecolor("red") | ||
# # ax.patches[p3.index.get_indexer([ticks.label1.get_text()])[0]].set_facecolor('red') | ||
# ax.patches[p3.index.get_indexer([ticks.label1.get_text()])[0]].set_facecolor('red') | ||
|
||
plt.yticks(range(0, range_limit+1, range_limit//10), [str(i) for i in range(0, range_limit + 1, range_limit//10)]) | ||
plt.ylabel(y_label_name) | ||
plt.title(graph_title) | ||
plt.tight_layout(h_pad=2) | ||
plt.show() | ||
|
||
|
||
# REFER: https://seaborn.pydata.org/tutorial/color_palettes.html | ||
# REFER: https://seaborn.pydata.org/examples/color_palettes.html | ||
# default_color_palette = sns.color_palette() | ||
# cool_warm_tuple = sns.color_palette("coolwarm", 17) | ||
# sns.palplot(cool_warm_tuple) | ||
# plt.show() |