[ICLR 2024 Spotlight] The official repository of Self-Supervised Learning methods "ROPIM", Pre-training with Random Orthogonal Projection Image Modeling
ROPIM is a self-supervised learning technique based on count sketching, which reduces local semantic information under the bounded noise variance. While Masked Image Modelling (MIM) introduces Binary noise, ROPIM proposes a continous masking strategy. Continuous masking allows for larger number of masking patterns compared to binary masking.
If you find our work useful for your research, please consider giving a star โญ and citation ๐บ:
@inproceedings{
haghighat2024ROPIM,
title={Pre-training with Random Orthogonal Projection Image Modeling},
author={Maryam Haghighat and Peyman Moghadam and Shaheer Mohamed and Piotr Koniusz},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=z4Hcegjzph}
}
Setup conda environment and install required packages:
# Create environment
conda create -n ropim python=3.8 -y
conda activate ropim
# Install requirements
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
# Clone ROPIM repo
git clone https://github.com/csiro-robotics/ROPIM
cd ROPIM
# Install other requirements
pip install -r requirements.txt
For pre-training models with ROPIM
, run:
python3 -m torch.distributed.launch --nnodes <num-of-nodes> --nproc_per_node <num-of-gpus-per-node> --node_rank <node-rank> --master_addr <hostname> \
main_ropim.py --world_size <total-num-of-gpus> \
--cfg <config-file> --data-path <imagenet-path>/train [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag> --spatial_sketching_threshold <threshol-for-sketching_ratio>]
For fine-tuning models pre-trained by ROPIM
, run:
python3 -m torch.distributed.launch --nnodes <num-of-nodes> --nproc_per_node <num-of-gpus-per-node> --node_rank <node-rank> --master_addr <hostname> \
main_finetune.py --world_size <total-num-of-gpus> \
--cfg <config-file> --data-path <imagenet-path> --pretrained <pretrained-ckpt> [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]
This research was funded by the Machine Learning and Artificial Intelligence Future Science Platform (MLAI FSP) and Science Digital at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia.
This code is built using the timm library, the BEiT repository and the SimMIM repository.