Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,393 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.streaming

import java.util.concurrent.ConcurrentLinkedQueue

import scala.collection.mutable

import org.scalatest.time.SpanSugar._

import org.apache.spark.SparkContext
import org.apache.spark.sql.{ForeachWriter, Row}
import org.apache.spark.sql.execution.datasources.v2.LowLatencyClock
import org.apache.spark.sql.execution.streaming.LowLatencyMemoryStream
import org.apache.spark.sql.execution.streaming.runtime.StreamingQueryWrapper
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.util.GlobalSingletonManualClock
import org.apache.spark.sql.test.TestSparkSession
import org.apache.spark.sql.types.{IntegerType, StringType, StructType}

class StreamRealTimeModeE2ESuite extends StreamRealTimeModeE2ESuiteBase {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you check the CI failure?

2025-11-04T07:01:24.2425213Z �[0m[�[0m�[31merror�[0m] �[0m�[0mFailed tests:�[0m
2025-11-04T07:01:24.2426468Z �[0m[�[0m�[31merror�[0m] �[0m�[0m	org.apache.spark.sql.streaming.StreamRealTimeModeSuite�[0m


import testImplicits._

override protected def createSparkSession =
new TestSparkSession(
new SparkContext(
"local[15]",
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we use more smaller values like other tests? According to the commit logs, RTM test suites seem to use this kind of high values. I'm wondering if this is required for some reasons.

"streaming-rtm-e2e-context",
sparkConf.set("spark.sql.shuffle.partitions", "5")
)
)

private def runForeachTest(withUnion: Boolean): Unit = {
var query: StreamingQuery = null
try {
withTempDir { checkpointDir =>
val clock = new GlobalSingletonManualClock()
LowLatencyClock.setClock(clock)
val uniqueSinkName = if (withUnion) {
sinkName + "-union"
} else {
sinkName
}

val read = LowLatencyMemoryStream[(String, Int)](5)
val read1 = LowLatencyMemoryStream[(String, Int)](5)
val dataframe = if (withUnion) {
read.toDF().union(read1.toDF())
} else {
read.toDF()
}

query = dataframe
.select(col("_1").as("key"), col("_2").as("value"))
.select(
concat(
col("key").cast("STRING"),
lit("-"),
col("value").cast("STRING")
).as("output")
)
.writeStream
.outputMode(OutputMode.Update())
.foreach(new ForeachWriter[Row] {
private var batchPartitionId: String = null
private val processedThisBatch = new ConcurrentLinkedQueue[String]()
override def open(partitionId: Long, epochId: Long): Boolean = {
ResultsCollector
.computeIfAbsent(uniqueSinkName, (_) => new ConcurrentLinkedQueue[String]())
batchPartitionId = s"$uniqueSinkName-$epochId-$partitionId"
assert(
!ResultsCollector.containsKey(batchPartitionId),
s"should NOT contain batchPartitionId ${batchPartitionId}"
)
ResultsCollector
.put(batchPartitionId, new ConcurrentLinkedQueue[String]())
true
}

override def process(value: Row): Unit = {
val v = value.getAs[String]("output")
ResultsCollector.get(uniqueSinkName).add(v)
processedThisBatch.add(v)
}

override def close(errorOrNull: Throwable): Unit = {

assert(
ResultsCollector.containsKey(batchPartitionId),
s"should contain batchPartitionId ${batchPartitionId}"
)
ResultsCollector.get(batchPartitionId).addAll(processedThisBatch)
processedThisBatch.clear()
}
})
.option("checkpointLocation", checkpointDir.getName)
.queryName("foreach")
// doesn't matter the batch duration set here since we are going
// to manually control batch durations via manual clock
.trigger(defaultTrigger)
.start()

val expectedResults = mutable.ListBuffer[String]()
val expectedResultsByBatch = mutable.HashMap[Int, mutable.ListBuffer[String]]()

val numRows = 10
for (i <- 0 until 3) {
expectedResultsByBatch(i) = new mutable.ListBuffer[String]()
for (key <- List("a", "b", "c")) {
for (j <- 1 to numRows) {
read.addData((key, 1))
val data = s"$key-1"
expectedResults += data
expectedResultsByBatch(i) += data
}
}

if (withUnion) {
for (key <- List("d", "e", "f")) {
for (j <- 1 to numRows) {
read1.addData((key, 2))
val data = s"$key-2"
expectedResults += data
expectedResultsByBatch(i) += data
}
}
}

eventually(timeout(60.seconds)) {
ResultsCollector
.get(uniqueSinkName)
.toArray(new Array[String](ResultsCollector.get(uniqueSinkName).size()))
.toList
.sorted should equal(expectedResults.sorted)
}

clock.advance(defaultTrigger.batchDurationMs)
eventually(timeout(60.seconds)) {
query
.asInstanceOf[StreamingQueryWrapper]
.streamingQuery
.getLatestExecutionContext()
.batchId should be(i + 1)
query.lastProgress.sources(0).numInputRows should be(numRows * 3)

val commitedResults = new mutable.ListBuffer[String]()
val numPartitions = if (withUnion) 10 else 5
for (v <- 0 until numPartitions) {
val it = ResultsCollector.get(s"$uniqueSinkName-${i}-$v").iterator()
while (it.hasNext) {
commitedResults += it.next()
}
}

commitedResults.sorted should equal(expectedResultsByBatch(i).sorted)
}
}
}
} finally {
if (query != null) {
query.stop()
}
}
}

private def runMapPartitionsTest(withUnion: Boolean): Unit = {
var query: StreamingQuery = null
try {
withTempDir { checkpointDir =>
val clock = new GlobalSingletonManualClock()
LowLatencyClock.setClock(clock)
val uniqueSinkName = if (withUnion) {
sinkName + "mapPartitions-union"
} else {
sinkName + "mapPartitions"
}

val read = LowLatencyMemoryStream[(String, Int)](5)
val read1 = LowLatencyMemoryStream[(String, Int)](5)
val dataframe = if (withUnion) {
read.toDF().union(read1.toDF())
} else {
read.toDF()
}

val df = dataframe
.select(col("_1").as("key"), col("_2").as("value"))
.select(
concat(
col("key").cast("STRING"),
lit("-"),
col("value").cast("STRING")
).as("output")
)
.as[String]
.mapPartitions(rows => {
rows.map(row => {
val collector = ResultsCollector
.computeIfAbsent(uniqueSinkName, (_) => new ConcurrentLinkedQueue[String]())
collector.add(row)
row
})
})
.toDF()

query = runStreamingQuery(sinkName, df)

val expectedResults = mutable.ListBuffer[String]()
val expectedResultsByBatch = mutable.HashMap[Int, mutable.ListBuffer[String]]()

val numRows = 10
for (i <- 0 until 3) {
expectedResultsByBatch(i) = new mutable.ListBuffer[String]()
for (key <- List("a", "b", "c")) {
for (j <- 1 to numRows) {
read.addData((key, 1))
val data = s"$key-1"
expectedResults += data
expectedResultsByBatch(i) += data
}
}

if (withUnion) {
for (key <- List("d", "e", "f")) {
for (j <- 1 to numRows) {
read1.addData((key, 2))
val data = s"$key-2"
expectedResults += data
expectedResultsByBatch(i) += data
}
}
}

// results collected from mapPartitions
eventually(timeout(60.seconds)) {
ResultsCollector
.get(uniqueSinkName)
.toArray(new Array[String](ResultsCollector.get(uniqueSinkName).size()))
.toList
.sorted should equal(expectedResults.sorted)
}

// results collected from foreach sink
eventually(timeout(60.seconds)) {
ResultsCollector
.get(sinkName)
.toArray(new Array[String](ResultsCollector.get(sinkName).size()))
.toList
.sorted should equal(expectedResults.sorted)
}

clock.advance(defaultTrigger.batchDurationMs)
eventually(timeout(60.seconds)) {
query
.asInstanceOf[StreamingQueryWrapper]
.streamingQuery
.getLatestExecutionContext()
.batchId should be(i + 1)
query.lastProgress.sources(0).numInputRows should be(numRows * 3)
}
}
}
} finally {
if (query != null) {
query.stop()
}
}
}

test("foreach") {
runForeachTest(withUnion = false)
}

test("union - foreach") {
runForeachTest(withUnion = true)
}

test("mapPartitions") {
runMapPartitionsTest(withUnion = false)
}

test("union - mapPartitions") {
runMapPartitionsTest(withUnion = true)
}

test("scala stateless UDF") {
val myUDF = (id: Int) => id + 1
val udf = spark.udf.register("myUDF", myUDF)
val (read, clock) = createMemoryStream()

val df = read
.toDF()
.select(col("_1").as("key"), udf(col("_2")).as("value_plus_1"))
.select(concat(col("key"), lit("-"), col("value_plus_1").cast("STRING")).as("output"))

var query: StreamingQuery = null
try {
query = runStreamingQuery("scala_udf", df)
processBatches(query, read, clock, 10, 3, (key, value) => Array(s"$key-${value + 1}"))
} finally {
if (query != null) query.stop()
}
}

test("stream static join") {
val (read, clock) = createMemoryStream()
val staticDf = spark
.range(1, 31, 1, 10)
.selectExpr("id AS join_key", "id AS join_value")
// This will produce HashAggregateExec which should not be blocked by allowList
// since it's the batch subquery
.groupBy("join_key")
.agg(max($"join_value").as("join_value"))

val df = read
.toDF()
.select(col("_1").as("key"), col("_2").as("value"))
.join(staticDf, col("value") === col("join_key"))
.select(concat(col("key"), lit("-"), col("value"), lit("-"), col("join_value")).as("output"))

var query: StreamingQuery = null
try {
query = runStreamingQuery("stream_static_join", df)
processBatches(query, read, clock, 10, 3, (key, value) => Array(s"$key-$value-$value"))
} finally {
if (query != null) query.stop()
}
}

test("to_json and from_json round-trip") {
val (read, clock) = createMemoryStream()
val schema = new StructType().add("key", StringType).add("value", IntegerType)

val df = read
.toDF()
.select(struct(col("_1").as("key"), col("_2").as("value")).as("json"))
.select(from_json(to_json(col("json")), schema).as("json"))
.select(concat(col("json.key"), lit("-"), col("json.value")))

var query: StreamingQuery = null
try {
query = runStreamingQuery("json_roundtrip", df)
processBatches(query, read, clock, 10, 3, (key, value) => Array(s"$key-$value"))
} finally {
if (query != null) query.stop()
}
}

test("generateExec passthrough") {
val (read, clock) = createMemoryStream()

val df = read
.toDF()
.select(col("_1").as("key"), col("_2").as("value"))
.withColumn("value_array", array(col("value"), -col("value")))
df.createOrReplaceTempView("tempView")
val explodeDF =
spark
.sql("select key, explode(value_array) as exploded_value from tempView")
.select(concat(col("key"), lit("-"), col("exploded_value").cast("STRING")).as("output"))

var query: StreamingQuery = null
try {
query = runStreamingQuery("generateExec_passthrough", explodeDF)
processBatches(
query,
read,
clock,
10,
3,
(key, value) => Array(s"$key-$value", s"$key--$value")
)
} finally {
if (query != null) query.stop()
}
}
}