Skip to content

amblee0306/EMGNN

Repository files navigation

EMGNN

This repo supplements our paper published in ICML-24. We explored employing a distribution of parametrized graphs for training a GNN in an Expectation Maximization (EM) framework. Through a probabilistic framework, we handle the uncertainty in graph structures stemming from various sources. Our approach enables the model to handle multiple graphs.

Data (Heterogeneous Graphs)

Download datasets (DBLP, ACM, IMDB) from this link and extract data.zip into data folder. (reference: GTN)

Alternatively, unzip data.zip into data folder.

Experiment Command

The result of each dataset is the corresponding text files out_ACM.txt, out_DBLP.txt, out_IMDB.txt, and out_CORA.txt.

IMDB

python main_batch_gcn.py --usedataset=IMDB --gamma=4 --alpha=0.2 --T=15 --Tprime=25

DBLP

python main_batch_gcn.py --usedataset=DBLP --gamma=4 --alpha=0.2 --T=15 --Tprime=25 --patience=200 --lr=0.003

ACM

python main_batch_gcn.py --usedataset=ACM --gamma=2 --alpha=0.2 --T=15 --Tprime=25 --patience=150 --lr=0.005 --layer=2

CORA

python main_homogeneous2.py --n-layers=2 --n-epochs=300 --gpu=1 --label_n_per_class=20 --dropout=0.8 --dataset=cora --self-loop

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages