Skip to content

Latest commit

 

History

History
25 lines (15 loc) · 1.37 KB

README.md

File metadata and controls

25 lines (15 loc) · 1.37 KB

EMGNN

This repo supplements our paper published in ICML-24. We explored employing a distribution of parametrized graphs for training a GNN in an Expectation Maximization (EM) framework. Through a probabilistic framework, we handle the uncertainty in graph structures stemming from various sources. Our approach enables the model to handle multiple graphs.

Data (Heterogeneous Graphs)

Download datasets (DBLP, ACM, IMDB) from this link and extract data.zip into data folder. (reference: GTN)

Alternatively, unzip data.zip into data folder.

Experiment Command

The result of each dataset is the corresponding text files out_ACM.txt, out_DBLP.txt, out_IMDB.txt, and out_CORA.txt.

IMDB

python main_batch_gcn.py --usedataset=IMDB --gamma=4 --alpha=0.2 --T=15 --Tprime=25

DBLP

python main_batch_gcn.py --usedataset=DBLP --gamma=4 --alpha=0.2 --T=15 --Tprime=25 --patience=200 --lr=0.003

ACM

python main_batch_gcn.py --usedataset=ACM --gamma=2 --alpha=0.2 --T=15 --Tprime=25 --patience=150 --lr=0.005 --layer=2

CORA

python main_homogeneous2.py --n-layers=2 --n-epochs=300 --gpu=1 --label_n_per_class=20 --dropout=0.8 --dataset=cora --self-loop