Skip to content
This repository has been archived by the owner on Jun 16, 2023. It is now read-only.

Backpressure

Joey edited this page Aug 10, 2017 · 2 revisions

背景

限流控制,又称 反压 (backpressure), 这个概念现在在大数据中非常火爆, 尤其是最近Heron/Spark都实现了这个功能。其实在jstorm 0.9.0 时,底层netty的同步模式,即可做到限流控制, 即当接收端能处理多少tuple, 发送端才能发送多少tuple, 但随着大面积使用, 发现netty的同步模式会存在死锁问题, 故这种方式并没有被大量使用。

原理

后来自2015年6月,twitter发布了heron的一篇论文, 描叙了,当下游处理速度跟不上上游发送速度时, 他们采取了一种暴力手段,立即停止spout的发送。 这种方式, jstorm拿过来进行压测, 发现存在大量问题, 当下游出现阻塞时, 上游停止发送, 下游消除阻塞后,上游又开闸放水,过了一会儿,下游又阻塞,上游又限流, 如此反复, 整个数据流一直处在一个颠簸状态。

真正合适的状态时, 上游降速到一个特定的值后, 下游的处理速度刚刚跟上上游的速度

什么样才能触发反压

jstorm的限流机制, 当下游bolt发生阻塞时, 并且阻塞task的比例超过某个比例时(现在默认设置为0.1), 即假设一个component有100个并发,当这个component 超过10个task 发生阻塞时,才会触发启动反压限流

什么样的情况才能判断是阻塞

在jstorm 连续4次采样周期中采样,队列情况,当队列超过80%(可以设置)时,即可认为该task处在阻塞状态

触发谁限流

根据阻塞component,进行DAG 向上推算,直到推算到他的源头spout, 并将topology的一个状态位,设置为 “限流状态”

怎么限流

当task出现阻塞时,他会将自己的执行线程的执行时间, 传给topology master, 当触发阻塞后, topology master会把这个执行时间传给spout, 于是, spout每发送一个tuple,就会等待这个执行时间。storm 社区的人想通过动态调整max_pending达到这种效果,其实这种做法根本无效。

怎样解除限流

当spout降速后, 发送过阻塞命令的task 检查队列水位连续4次低于0.05时, 发送解除反应命令到topology master, topology master 发送提速命令给所有的spout, 于是spout 每发送一个tuple的等待时间--, 当spout的等待时间降为0时, spout会不断发送“解除限速”命令给 topology master, 而topology master确定所有的降速的spout都发了解除限速命令时, 将topology状态设置为正常,标志真正解除限速

如何使用

## 反压总开关
topology.backpressure.enable: true
## 高水位 -- 当队列使用量超过这个值时,认为阻塞
topology.backpressure.water.mark.high: 0.8
## 低水位 -- 当队列使用量低于这个量时, 认为可以解除阻塞
topology.backpressure.water.mark.low: 0.05
## 阻塞比例 -- 当阻塞task数/这个component并发 的比例高于这值时,触发反压
topology.backpressure.coordinator.trigger.ratio: 0.1

## 反压采样周期, 单位ms
topology.backpressure.check.interval: 1000
## 采样次数和采样比例, 即在连续4次采样中, 超过(不包含)(4 *0.75)次阻塞才能认为真正阻塞, 超过(不包含)(4 * 0.75)次解除阻塞才能认为是真正解除阻塞
topology.backpressure.trigger.sample.rate: 0.75
topology.backpressure.trigger.sample.number: 4

动态调整

jstorm update_topology topology-name -conf confpath

confpath 放置 上叙的配置

Clone this wiki locally