🎉 NEW: Preprint published November 7, 2025 on bioRxiv
📅 FREE Webinar: Register now — Learn CyteType from the developers
Manual cell type annotation takes weeks and varies between experts. CyteTypeR delivers consistent, expert-level annotations in minutes using a multi-agent AI system where specialized agents collaborate on marker analysis, literature evidence, and Cell Ontology mapping.
- Save weeks of manual curation — Annotate entire datasets at expert level in minutes, not days
- Drop-in integration — 3 lines of code, works with existing Scanpy/Seurat workflows
- No setup friction — No API keys required; built-in LLM with optional custom configuration
- Standards-compliant output — Automatic Cell Ontology term mapping (CL IDs)
- Comprehensive annotations — Cell types, subtypes, activation states, confidence scores, and lineage
- Transparent and auditable — Interactive HTML reports show evidence, reasoning, and confidence for every annotation
# Using devtools
install.packages("devtools")
# Install from GitHub
library(devtools)
install_github("NygenAnalytics/CyteTypeR")# Load package
library(CyteTypeR)
prepped_data <- PrepareCyteTypeR(
pbmc,
pbmc.markers,
n_top_genes = 10,
group_key = 'seurat_clusters',
aggregate_metadata = TRUE,
coordinates_key = "umap"
)
metadata <- list(
title = 'My scRNA-seq analysis of human pbmc',
run_label = 'initial_analysis',
experiment_name = 'pbmc_human_samples_study'
)
results <- CyteTypeR(
obj=pbmc,
prepped_data = prepped_data,
study_context = "pbmc blood samples from humans",
metadata = metadata
)Note: No API keys required for default configuration. See custom LLM configuration for advanced options.
Using Scanpy/Anndata? → CyteType
Each analysis generates an HTML report documenting annotation decisions, marker genes, confidence scores, and Cell Ontology mappings:
View example report with embedded chat interface
Validated across multiple datasets, tissues, and organisms. CyteType's agentic architecture consistently outperforms other methods across multiple LLMs:
📊 Performance: 388% improvement over GPTCellType, 268% over CellTypist, 101% over SingleR
Browse results from single-cell atlases →
📖 Configuration options 💬 Join Discord for support
If you use CyteTypeR in your research, please cite our preprint:
@article{cytetype2025,
title={Multi-agent AI enables evidence-based cell annotation in single-cell transcriptomics},
author={Gautam Ahuja, Alex Antill, Yi Su, Giovanni Marco Dall'Olio, Sukhitha Basnayake, Göran Karlsson, Parashar Dhapola},
journal={bioRxiv},
year={2025},
doi={10.1101/2025.11.06.686964},
url={https://www.biorxiv.org/content/10.1101/2025.11.06.686964v1}
}CyteTypeR is free for academic and non-commercial research use under CC BY‑NC‑SA 4.0 — see LICENSE.md
For commercial use, please contact us at [email protected]