-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7ef5b0a
commit 5a9b232
Showing
1 changed file
with
121 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
import json | ||
from pathlib import Path | ||
|
||
import arviz as az | ||
import jax | ||
import jax.numpy as jnp | ||
import numpy as np | ||
import numpyro | ||
|
||
# load priors | ||
# have to run this from the right directory | ||
from priors import ( | ||
autoreg_p_hosp_rv, | ||
autoreg_rt_rv, | ||
eta_sd_rv, | ||
generation_interval_pmf_rv, | ||
hosp_wday_effect_rv, | ||
i0_first_obs_n_rv, | ||
inf_feedback_strength_rv, | ||
infection_feedback_pmf_rv, | ||
initialization_rate_rv, | ||
log_r_mu_intercept_rv, | ||
p_hosp_mean_rv, | ||
p_hosp_w_sd_rv, | ||
phi_rv, | ||
uot, | ||
) | ||
from pyrenew.deterministic import DeterministicVariable | ||
|
||
import pyrenew_covid_wastewater.plotting as plotting | ||
from pyrenew_covid_wastewater.hosp_only_ww_model import hosp_only_ww_model | ||
|
||
# read this from cli | ||
model_dir = Path( | ||
"private_data/r_2024-09-10_f_2024-03-13_l_2024-09-09_t_2024-08-14/CA" | ||
) | ||
|
||
n_chains = 4 | ||
numpyro.set_host_device_count(n_chains) | ||
|
||
|
||
data_path = model_dir / "data_for_model_fit.json" | ||
|
||
with open( | ||
data_path, | ||
"r", | ||
) as file: | ||
model_data = json.load(file) | ||
|
||
|
||
inf_to_hosp_rv = DeterministicVariable( | ||
"inf_to_hosp", jnp.array(model_data["inf_to_hosp_pmf"]) | ||
) | ||
|
||
data_observed_hospital_admissions = jnp.array( | ||
model_data["data_observed_hospital_admissions"] | ||
) | ||
state_pop = jnp.array(model_data["state_pop"]) | ||
n_forecast_points = len(model_data["test_ed_admissions"]) | ||
|
||
my_model = hosp_only_ww_model( | ||
state_pop=state_pop, | ||
i0_first_obs_n_rv=i0_first_obs_n_rv, | ||
initialization_rate_rv=initialization_rate_rv, | ||
log_r_mu_intercept_rv=log_r_mu_intercept_rv, | ||
autoreg_rt_rv=autoreg_rt_rv, | ||
eta_sd_rv=eta_sd_rv, # sd of random walk for ar process, | ||
generation_interval_pmf_rv=generation_interval_pmf_rv, | ||
infection_feedback_pmf_rv=infection_feedback_pmf_rv, | ||
infection_feedback_strength_rv=inf_feedback_strength_rv, | ||
p_hosp_mean_rv=p_hosp_mean_rv, | ||
p_hosp_w_sd_rv=p_hosp_w_sd_rv, | ||
autoreg_p_hosp_rv=autoreg_p_hosp_rv, | ||
hosp_wday_effect_rv=hosp_wday_effect_rv, | ||
phi_rv=phi_rv, | ||
inf_to_hosp_rv=inf_to_hosp_rv, | ||
n_initialization_points=uot, | ||
i0_t_offset=0, | ||
) | ||
|
||
|
||
my_model.run( | ||
num_warmup=500, | ||
num_samples=500, | ||
rng_key=jax.random.key(200), | ||
data_observed_hospital_admissions=data_observed_hospital_admissions, | ||
mcmc_args=dict(num_chains=n_chains, progress_bar=True), | ||
nuts_args=dict(find_heuristic_step_size=True), | ||
) | ||
|
||
|
||
posterior_predictive = my_model.posterior_predictive( | ||
n_datapoints=len(data_observed_hospital_admissions) + n_forecast_points | ||
) | ||
|
||
idata = az.from_numpyro( | ||
my_model.mcmc, | ||
posterior_predictive=posterior_predictive, | ||
) | ||
|
||
chain_ll = ( | ||
idata["log_likelihood"] | ||
.mean(dim=["observed_hospital_admissions_dim_0", "draw"])[ | ||
"observed_hospital_admissions" | ||
] | ||
.values | ||
) | ||
|
||
chains_to_keep = np.arange(n_chains)[ | ||
((chain_ll - chain_ll.max()) / chain_ll.max()) < 2 | ||
] | ||
# would like to not have to run this | ||
|
||
idata = idata.sel(chain=chains_to_keep) | ||
|
||
|
||
plotting.plot_predictive(idata) | ||
|
||
idata.to_dataframe().to_csv( | ||
model_dir / "pyrenew_inference_data.csv", index=False | ||
) |