-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #47 from phohenberger/main
Add static mesh, new shapes, dynamic color and variable render resolution
- Loading branch information
Showing
22 changed files
with
944 additions
and
151 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
""" | ||
ZnVis: A Zincwarecode package. | ||
License | ||
------- | ||
This program and the accompanying materials are made available under the terms | ||
of the Eclipse Public License v2.0 which accompanies this distribution, and is | ||
available at https://www.eclipse.org/legal/epl-v20.html | ||
SPDX-License-Identifier: EPL-2.0 | ||
Copyright Contributors to the Zincwarecode Project. | ||
Contact Information | ||
------------------- | ||
email: [email protected] | ||
github: https://github.com/zincware | ||
web: https://zincwarecode.com/ | ||
Citation | ||
-------- | ||
If you use this module please cite us with: | ||
Summary | ||
------- | ||
Tutorial script to visualize simple spheres over a random trajectory. | ||
""" | ||
|
||
import numpy as np | ||
|
||
import znvis as vis | ||
|
||
if __name__ == "__main__": | ||
""" | ||
Run the all shapes example. | ||
""" | ||
|
||
material_1 = vis.Material(colour=np.array([30, 144, 255]) / 255, alpha=0.9) | ||
# Define the sphere. | ||
trajectory = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh = vis.Sphere(radius=2.0, material=material_1, resolution=30) | ||
particle = vis.Particle(name="Sphere", mesh=mesh, position=trajectory) | ||
|
||
material_2 = vis.Material(colour=np.array([255, 140, 0]) / 255, alpha=1.0) | ||
# Define the cylinder. | ||
trajectory_2 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_2 = vis.Cylinder(radius=1.0, | ||
height=2.0, | ||
split=1, | ||
material=material_2, | ||
resolution=30) | ||
particle_2 = vis.Particle(name="Cylinder", mesh=mesh_2, position=trajectory_2) | ||
|
||
material_3 = vis.Material(colour=np.array([100, 255, 130]) / 255, alpha=1.0) | ||
# Define the icosahedron. | ||
trajectory_3 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_3 = vis.Icosahedron(radius=2.0, material=material_3) | ||
particle_3 = vis.Particle(name="Icosahedron", mesh=mesh_3, position=trajectory_3) | ||
|
||
material_4 = vis.Material(colour=np.array([255, 200, 50]) / 255, alpha=1.0) | ||
# Define the torus. | ||
trajectory_4 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_4 = vis.Torus(torus_radius=1.0, | ||
tube_radius=0.5, | ||
tubular_resolution=30, | ||
radial_resolution=30, | ||
material=material_4) | ||
particle_4 = vis.Particle(name="Torus", mesh=mesh_4, position=trajectory_4) | ||
|
||
material_5 = vis.Material(colour=np.array([250, 50, 20]) / 255, alpha=1.0) | ||
# Define the mobius loop. | ||
trajectory_5 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_5 = vis.MobiusLoop(twists=3, | ||
radius=2, | ||
flatness=1, | ||
width=2, scale=1, | ||
length_split=200, | ||
width_split=200, | ||
material=material_5) | ||
particle_5 = vis.Particle(name="MobiusLoop", mesh=mesh_5, position=trajectory_5) | ||
|
||
material_6 = vis.Material(colour=np.array([255, 90, 255]) / 255, alpha=1.0) | ||
# Define the octahedron. | ||
trajectory_6 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_6 = vis.Octahedron(radius=2.0, material=material_6) | ||
particle_6 = vis.Particle(name="Octahedron", mesh=mesh_6, position=trajectory_6) | ||
|
||
material_7 = vis.Material(colour=np.array([255, 220, 100]) / 255, alpha=1.0) | ||
# Define the tetrahedron. | ||
trajectory_7 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_7 = vis.Tetrahedron(radius=2.0, material=material_7) | ||
particle_7 = vis.Particle(name="Tetrahedron", mesh=mesh_7, position=trajectory_7) | ||
|
||
material_8 = vis.Material(colour=np.array([255, 200, 240]) / 255, alpha=1.0) | ||
# Define the arrow. | ||
trajectory_8 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
direction_8 = np.random.uniform(-1, 1, (10, 1, 3)) | ||
mesh_8 = vis.Arrow(scale=2, material=material_8, resolution=30) | ||
particle_8 = vis.Particle(name="Arrow", | ||
mesh=mesh_8, | ||
position=trajectory_8, | ||
director=direction_8) | ||
|
||
material_9 = vis.Material(colour=np.array([150, 255, 230]) / 255, alpha=1.0) | ||
# Define the box. | ||
trajectory_9 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_9 = vis.Box(width=1, height=3, depth=0.5, material=material_9) | ||
particle_9 = vis.Particle(name="BoxMesh", mesh=mesh_9, position=trajectory_9) | ||
|
||
material_10 = vis.Material(colour=np.array([255, 10, 100]) / 255, alpha=1.0) | ||
# Define the cone. | ||
trajectory_10 = np.random.uniform(-10, 10, (10, 1, 3)) | ||
mesh_10 = vis.Cone(radius=1.0, height=2.0, material=material_10, resolution=30) | ||
particle_10 = vis.Particle(name="Cone", mesh=mesh_10, position=trajectory_10) | ||
|
||
particle_list = [particle, particle_2, particle_3, particle_4, particle_5, | ||
particle_6, particle_7, particle_8, particle_9, particle_10] | ||
|
||
# Create a bounding box | ||
bounding_box = vis.BoundingBox( | ||
center=np.array([0, 0, 0]), box_size=np.array([20, 20, 20]) | ||
) | ||
|
||
# Construct the visualizer and run | ||
visualizer = vis.Visualizer( | ||
particles=particle_list, frame_rate=20, bounding_box=bounding_box | ||
) | ||
visualizer.run_visualization() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
""" | ||
ZnVis: A Zincwarecode package. | ||
License | ||
------- | ||
This program and the accompanying materials are made available under the terms | ||
of the Eclipse Public License v2.0 which accompanies this distribution, and is | ||
available at https://www.eclipse.org/legal/epl-v20.html | ||
SPDX-License-Identifier: EPL-2.0 | ||
Copyright Contributors to the Zincwarecode Project. | ||
Contact Information | ||
------------------- | ||
email: [email protected] | ||
github: https://github.com/zincware | ||
web: https://zincwarecode.com/ | ||
Citation | ||
-------- | ||
If you use this module please cite us with: | ||
Summary | ||
------- | ||
Tutorial script to visualize simple spheres over a random trajectory. | ||
""" | ||
|
||
import numpy as np | ||
|
||
import znvis as vis | ||
|
||
if __name__ == "__main__": | ||
""" | ||
Run the dynamic color example. | ||
""" | ||
|
||
# Create a color list (N_frames, N_particles, 3 (RGB)) | ||
# Basically give each particle a specified color for each frame | ||
colours = np.tile([30, 144, 255], (100, 5, 1)) | ||
# Change the color of the first particle to red | ||
colours[:, 0, 0] = np.linspace(30, 255, 100) | ||
# Change the color of the second particle to green | ||
colours[:, 1, 1] = np.linspace(144, 255, 100) | ||
colours[:, 1, 2] = np.linspace(255, 30, 100) | ||
# Change the color of the third particle to blue | ||
colours[:, 2, 0] = np.linspace(30, 10, 100) | ||
colours[:, 2, 1] = np.linspace(140, 90, 100) | ||
# Change the color of the fourth particle to white | ||
colours[:, 3, 0] = np.linspace(30, 255, 100) | ||
colours[:, 3, 1] = np.linspace(144, 255, 100) | ||
# Change the color of the fifth particle to black | ||
colours[:, 4, 0] = np.linspace(30, 0, 100) | ||
colours[:, 4, 1] = np.linspace(144, 0, 100) | ||
colours[:, 4, 2] = np.linspace(255, 0, 100) | ||
|
||
material_1 = vis.Material(colour=colours / 255, alpha=1.0) | ||
# Define the first particle. | ||
trajectory = np.random.uniform(-5, 5, (1, 5, 3)) | ||
trajectory = np.tile(trajectory, (100, 1, 1)) | ||
# Turn on dynamic coloring for the mesh | ||
mesh = vis.Sphere(radius=2.0, resolution=20, material=material_1) | ||
particle = vis.Particle( | ||
name="Spheres", mesh=mesh, position=trajectory, smoothing=False | ||
) | ||
|
||
# Construct the visualizer and run | ||
visualizer = vis.Visualizer(particles=[particle], frame_rate=20) | ||
visualizer.run_visualization() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
""" | ||
ZnVis: A Zincwarecode package. | ||
License | ||
------- | ||
This program and the accompanying materials are made available under the terms | ||
of the Eclipse Public License v2.0 which accompanies this distribution, and is | ||
available at https://www.eclipse.org/legal/epl-v20.html | ||
SPDX-License-Identifier: EPL-2.0 | ||
Copyright Contributors to the Zincwarecode Project. | ||
Contact Information | ||
------------------- | ||
email: [email protected] | ||
github: https://github.com/zincware | ||
web: https://zincwarecode.com/ | ||
Citation | ||
-------- | ||
If you use this module please cite us with: | ||
Summary | ||
------- | ||
Tutorial script to visualize simple spheres over a random trajectory. | ||
""" | ||
|
||
import numpy as np | ||
|
||
import znvis as vis | ||
|
||
if __name__ == "__main__": | ||
""" | ||
Run the vector field example. | ||
""" | ||
|
||
# Build a grid | ||
x_values = np.linspace(-10, 10, 21) | ||
y_values = np.linspace(-10, 10, 21) | ||
z_values = np.linspace(0, 0, 1) | ||
|
||
grid = np.meshgrid(x_values, y_values, z_values) | ||
grid = np.array(grid).T.reshape(-1, 3) | ||
grid = np.tile(grid, (100, 1, 1)) | ||
|
||
# Define arrow mesh and insert in vector field | ||
material = vis.Material(colour=np.array([30, 144, 255]) / 255, alpha=0.6) | ||
mesh = vis.Arrow(scale=0.5, resolution=20, material=material) | ||
|
||
directions = np.random.uniform(-1, 1, (100, 441, 3)) | ||
# confine the directions to be in the z = 0 plane | ||
directions[:,:,2] = 0 | ||
|
||
vector_field = vis.VectorField(name="VectorField", | ||
mesh=mesh, | ||
position=grid, | ||
direction=directions) | ||
|
||
# Define particles | ||
material_2 = vis.Material(colour=np.array([255, 140, 0]) / 255, alpha=1.0) | ||
mesh_2 = vis.Sphere(radius=1.0, resolution=20, material=material_2) | ||
|
||
trajectory_2 = np.random.uniform(-10, 10, (100, 1, 3)) | ||
# confine the particles to be in the z = 0 plane | ||
trajectory_2[:,:,2] = 0 | ||
|
||
particle = vis.Particle(name="Spheres", | ||
mesh=mesh_2, | ||
position=trajectory_2, | ||
smoothing=False) | ||
|
||
# Construct the visualizer and run | ||
visualizer = vis.Visualizer(particles=[particle], | ||
vector_field=[vector_field], | ||
frame_rate=20) | ||
visualizer.run_visualization() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.