Skip to content

zhangtingyu11/C-CLOCs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code will be released upon accepted

实验环境

CUDA 11.8 Pytorch 2.0.1 single RTX4090 Ubuntu 20.04 MMDet 3.0.0

1.拉取仓库

git clone https://github.com/zhangtingyu11/C-CLOCs.git

Data Preparation

  1. 软链接kitti数据集
cd data/
ln -s YOUR_KITTI_DATASET_PATH kitti
下載[道路信息](https://drive.google.com/file/d/1d5mq0RXRnvHPVeKx6Q612z0YRO1t2wAp/view?pli=1)

kitti数据集的目录结构如下

# ImagesSets can be found in https://github.com/open-mmlab/OpenPCDet/tree/master/data/kitti/ImageSets
├── ImageSets
├── testing
│   ├── calib
│   ├── image_2
│   └── velodyne
└── training
    ├── calib
    ├── image_2
    ├── label_2
    ├── planes
    └── velodyne
  1. 通过SAM模型生成数据库 参考SAM官方仓库安装SAM 创建weights文件夹,并下载权重文件(vit_h, vit_l, vit_b)到weights文件夹下 运行generate_mask.py
python tools/generate_masks.py #KITTI
python tools/generate_masks_nuscenes.py # nuscenes

生成后的kitti数据集结构如下:

├── image_gt_database_train
├── ImageSets
├── testing
│   ├── calib
│   ├── image_2
│   └── velodyne
├── training
│   ├── calib
│   ├── image_2
│   ├── label_2
|   ├── planes
│   └── velodyne
  1. 将KITTI数据集转成COCO的格式
python tools/kitti2coco.py

数据集的结构如下:

├── coco
│   ├── annotations
│   ├── coco_label_2
│   ├── labels
│   │   ├── train_labels
│   │   └── val_labels
│   ├── train2017
│   └── val2017
├── kitti
│   ├── image_gt_database_train
│   ├── ImageSets
│   ├── testing
│   │   ├── calib
│   │   ├── image_2
│   │   └── velodyne
│   └── training
│       ├── calib
│       ├── image_2
│       ├── label_2
│       └── velodyne
  1. 安装mmdetection
# 在openpcdet主目录下
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
cd mmdetection
git checkout 3.0.0
pip install -v -e .
  1. 软链接mmdetection中的data目录
cd mmdetection
ln -s ../data data
  1. 生成kitti数据
#在OpenPCDet主目录下
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
  1. 用mmdetection训练nuImages 下载nuImages数据集 借助mmdetection3d中的脚本生成coco数据
python -u tools/dataset_converters/nuimage_converter.py --data-root data/nuImages --version v1.0-train v1.0-val v1.0-mini --out-dir data/nuImages/coco

借助脚本训练2D目标检测器

KITTI

cd tools
python train_clocs.py

nuScenes

cd tools
python train_clocs_nuscenes.py

训练

需要先训练SECOND模型:

python train.py --cfg_file tools/cfgs/kitti_models/second_car.yaml

再训练C-CLOCs模型

cd tools
python train.py --cfg_file tools/cfgs/kitti_models/second_car_clocs_contra_fusion_aug.yaml --pretrained_model ${second预训练模型的路径}

About

The code will be released upon accepted

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published