Skip to content

yueyunkeji/tfjs-wechat

 
 

Repository files navigation

TensorFlow.js 微信小程序插件

TensorFlow.js是谷歌开发的机器学习开源项目,致力于为javascript提供具有硬件加速的机器学习模型训练和部署。 TensorFlow.js 微信小程序插件封装了TensorFlow.js库,用于提供给第三方小程序调用。 例子可以看TFJS Mobilenet 物体识别小程序

添加插件

在使用插件前,首先要在小程序管理后台的“设置-第三方服务-插件管理”中添加插件。开发者可登录小程序管理后台,通过 appid [wx6afed118d9e81df9] 查找插件并添加。本插件无需申请,添加后可直接使用。

引入插件代码包

使用插件前,使用者要在 app.json 中声明需要使用的插件,例如:

代码示例:

{
  ...
  "plugins": {
    "tfjsPlugin": {
      "version": "0.0.5",
      "provider": "wx6afed118d9e81df9"
    }
  }
  ...
}

引入TensorFlow.js npm

TensorFlow.js 最新版本是以npm包的形式发布,小程序需要使用npm或者yarn来载入TensorFlow.js npm包。也可以手动修改 package.json 文件来加入。

TensorFlow.js有一个联合包 - @tensorflow/tfjs,包含了四个分npm包:

  • tfjs-core: 基础包
  • tfjs-converter: GraphModel 导入和执行包
  • tfjs-layers: LayersModel 创建,导入和执行包
  • tfjs-data:数据流工具包

对于小程序而言,由于有2M的app大小限制,不建议直接使用联合包,而是按照需求加载分包。

  • 如果小程序只需要导入和运行GraphModel模型的的话,建议只加入tfjs-core和tfjs-converter包。这样可以尽量减少导入包的大小。
  • 如果需要创建,导入或训练LayersModel模型,需要再加入 tfjs-layers包。

下面的例子是只用到tfjs-core和tfjs-converter包。代码示例:

{
  "name": "yourProject",
  "version": "0.0.1",
  "main": "dist/index.js",
  "license": "Apache-2.0",
  "dependencies": {
    "@tensorflow/tfjs-core": "1.2.2",
    "@tensorflow/tfjs-converter": "1.2.2"
  }
}

参考小程序npm工具文档如何编译npm包到小程序中。

注意 请从微信小程序开发版Nightly Build更新日志下载最新的微信开发者工具,保证版本号>=v1.02.1907022.

Polyfill fetch 函数

如果需要使用tf.loadGraphModel或tf.loadLayersModel API来载入模型,小程序需要按以下流程填充fetch函数:

  1. 如果你使用npm, 你可以载入fetch-wechat npm 包
{
  "name": "yourProject",
  "version": "0.0.1",
  "main": "dist/index.js",
  "license": "Apache-2.0",
  "dependencies": {
    "@tensorflow/tfjs-core": "1.2.2",
    "@tensorflow/tfjs-converter": "1.2.2",
    "fetch-wechat": "0.0.3"
  }
}

也可以直接拷贝以下文件到你的javascript源目录: https://cdn.jsdelivr.net/npm/[email protected]/dist/fetch_wechat.min.js

  1. 在app.js的onLaunch里调用插件configPlugin函数
var fetchWechat = require('fetch-wechat');
var tf = require('@tensorflow/tfjs-core');
var plugin = requirePlugin('tfjsPlugin');
//app.js
App({
  onLaunch: function () {
    plugin.configPlugin({
      // polyfill fetch function
      fetchFunc: fetchWechat.fetchFunc(),
      // inject tfjs runtime
      tf,
      // provide webgl canvas
      canvas: wx.createOffscreenCanvas()
    });
  }
});

组件设置完毕就可以开始使用 TensorFlow.js库的API了。

使用 tfjs-models 模型库注意事项

模型库提供了一系列训练好的模型,方便大家快速的给小程序注入ML功能。模型分类包括

  • 图像识别
  • 语音识别
  • 人体姿态识别
  • 物体识别
  • 文字分类

由于这些API默认模型文件都存储在谷歌云上,直接使用会导致中国用户无法直接读取。在小程序内使用模型API时要提供 modelUrl 的参数,可以指向我们在谷歌中国的影像服务器。 谷歌云的base url是 https://storage.googleapis.com, 中国镜像的base url是https://www.gstaticcnapps.cn 模型的url path是一致的,比如

下面时加载posenet模型的例子:

import * as posenet from '@tensorflow-models/posenet';

const POSENET_URL =
    'https://www.gstaticcnapps.cn/tfjs-models/savedmodel/posenet/mobilenet/float/050/model-stride16.json';

const model = await posenet.load({
  architecture: 'MobileNetV1',
  outputStride: 16,
  inputResolution: 193,
  multiplier: 0.5,
  modelUrl: POSENET_URL
});

版本需求

  • 微信基础库版本 >= 2.7.3
  • 微信开发者工具 >= v1.02.1907022
  • tfjs-core >= 1.2.2

更新说明

  • 0.0.2 plugin不再映射TensorFlow.js API库,由小程序端提供。
  • 0.0.3 使用offscreen canvas,小程序无需加入plugin component。
  • 0.0.5 修改例子程序使用tfjs分包来降低小程序大小。

About

WeChat Mini-program plugin for TensorFlow.js

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TypeScript 81.2%
  • JavaScript 18.8%