Skip to content

ybenjo/TrackingDynamics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 

Repository files navigation

TrackingDynamics

About

Tracking Dynamics of Topic Trends Using a Finite Mixture Model(KDD 2004)

TODO

  • Initialize \mu in approprietly.

, and set \mu_i^{(0)} the first x_t s that are different each other.

Algorithm

Fitting Gaussian distribution in streaming documents. Parameters in step t are updated using parameters in step t-1.

Usage

make ttfmm  
./ttfmm input_file alpha lambda k_max  
  • alpha[NUM]: Parameter of \alpha( > 0)
  • lambda[NUM]: Parameter of \labmda(0 < lambda < 1)
  • k_max[NUM]: # of maximum topic( > 0)

Format

Each line is one document.

timestamp \t word_1 \t word_2 \t ...  
timestamp \t word_1 \t word_2 \t ...  

Memo

  • Small \lambda causes inf in \lambda^{-(t_{new} - t_{old})}.
  • Dont calculate denominator in p(i|x_t) because |\Sigma| sometimes zero.
  • Using logsumexp in p(i|x_t) to avoid overflow.

About

Tracking Dynamics of Topic Trends Using a Finite Mixture Model (KDD 2004)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages