Skip to content

Commit

Permalink
Merge pull request #450 from yandexdataschool/spring20
Browse files Browse the repository at this point in the history
Merge spring20 into master
  • Loading branch information
dniku authored Aug 4, 2020
2 parents ff1f81e + 3cd62f6 commit d51a1ee
Show file tree
Hide file tree
Showing 142 changed files with 200,559 additions and 219,602 deletions.
46 changes: 0 additions & 46 deletions Dockerfile

This file was deleted.

9 changes: 5 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Practical_RL

# Practical_RL [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/yandexdataschool/practical_rl/master)
An open course on reinforcement learning in the wild.
Taught on-campus at [HSE](https://cs.hse.ru) and [YSDA](https://yandexdataschool.com/) and maintained to be friendly to online students (both english and russian).

Expand All @@ -12,17 +12,17 @@ Taught on-campus at [HSE](https://cs.hse.ru) and [YSDA](https://yandexdataschool
[![Github contributors](https://img.shields.io/github/contributors/yandexdataschool/Practical_RL.svg?logo=github&logoColor=white)](https://github.com/yandexdataschool/Practical_RL/graphs/contributors)

# Course info
* __Chat room__ for YSDA & HSE students is [here](https://t.me/joinchat/CDFcMVcoAQvEiI9WAo1pEQ)
* __Chat room__ for YSDA & HSE students is [here](http://t.me/practical_rl_2020)
* __Grading__ rules for YSDA & HSE students is [here](https://github.com/yandexdataschool/Practical_RL/wiki/Homeworks-and-grading)

* __FAQ:__ [About the course](https://github.com/yandexdataschool/Practical_RL/wiki/Practical-RL), [Technical issues thread](https://github.com/yandexdataschool/Practical_RL/issues/1), [Lecture Slides](https://yadi.sk/d/loPpY45J3EAYfU), [Online Student Survival Guide](https://github.com/yandexdataschool/Practical_RL/wiki/Online-student's-survival-guide)

* Anonymous [feedback form](https://docs.google.com/forms/d/e/1FAIpQLSdurWw97Sm9xCyYwC8g3iB5EibITnoPJW2IkOVQYE_kcXPh6Q/viewform).

* Virtual course environment:
* [__Google Colab__](https://colab.research.google.com/) - set open -> github -> yandexdataschool/pracical_rl -> {branch name} and select any notebook you want.
* [Installing dependencies](https://github.com/yandexdataschool/Practical_RL/issues/1) on your local machine (recommended).
* [__google colab__](https://colab.research.google.com/) - set open -> github -> yandexdataschool/pracical_rl -> {branch name} and select any notebook you want.
* Alternatives: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/yandexdataschool/practical_rl/master) and [Azure Notebooks](https://notebooks.azure.com/).
* Alternative: [Azure Notebooks](https://notebooks.azure.com/).


# Additional materials
Expand Down Expand Up @@ -94,6 +94,7 @@ Course materials and teaching by: _[unordered]_
- [Mikhail Konobeev](https://github.com/MichaelKonobeev) - seminars, hw checkups
- [Ivan Kharitonov](https://github.com/neer201) - seminars, hw checkups
- [Ravil Khisamov](https://github.com/zshrav) - seminars, hw checkups
- [Anna Klepova](https://github.com/q0o0p) - hw checkups
- [Fedor Ratnikov](https://github.com/justheuristic) - admin stuff

# Contributions
Expand Down
118 changes: 54 additions & 64 deletions docker/Dockerfile
Original file line number Diff line number Diff line change
@@ -1,75 +1,65 @@
FROM ubuntu:16.04
ARG device
ARG username="jovyan"

FROM ubuntu:18.04 AS base-cpu

FROM nvidia/cuda:10.2-base-ubuntu18.04 AS base-gpu

FROM base-$device AS base

ARG username
ENV DEBIAN_FRONTEND=noninteractive

RUN apt-get -qq update && \
apt-get install -y wget unzip git cmake xvfb sudo freeglut3-dev ffmpeg

RUN adduser --disabled-password --gecos "Default user" $username && \
adduser $username sudo && \
echo "%sudo ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers && \
mkdir /notebooks && \
chown -R $username /notebooks

RUN su $username -c \
"wget https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh \
-O /tmp/anaconda3.sh" && \
mkdir -p /opt/conda && \
chown -R $username /opt/conda && \
su $username -c "/bin/bash /tmp/anaconda3.sh -b -p /opt/conda -u" && \
rm /tmp/anaconda3.sh && \
ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
su $username -c "echo '. /opt/conda/etc/profile.d/conda.sh' >> ~/.bashrc" && \
su $username -c "echo 'conda activate base' >> ~/.bashrc"

ADD deeplearning.yaml /tmp/deeplearning-template.yaml

USER $username
SHELL ["/bin/bash", "-i", "-c"]
RUN conda install -y jupyter

FROM base AS stage-cpu
RUN sed -e "s/{tensorflow}/tensorflow/g" -e "s/{pytorch}/pytorch/g" /tmp/deeplearning-template.yaml > /tmp/deeplearning.yaml

FROM base AS stage-gpu
RUN sed -e "s/{tensorflow}/tensorflow-gpu/g" -e "s/{pytorch}/pytorch-gpu/g" /tmp/deeplearning-template.yaml > /tmp/deeplearning.yaml

FROM stage-$device as final

LABEL maintainer "Alexander Panin <[email protected]>, Dmitry Mittov <[email protected]>"

ARG username
USER $username
SHELL ["/bin/bash", "-i", "-c"]

RUN echo "deb http://archive.ubuntu.com/ubuntu trusty-backports main restricted universe multiverse" >> /etc/apt/sources.list && \
apt-get -qq update && \
apt-get install -y cmake \
wget \
unzip \
git \
zlib1g-dev \
libjpeg-dev \
xvfb \
libav-tools \
xorg-dev \
python-opengl \
swig3.0 \
python-dev \
python3-dev \
python-pip \
python3-pip \
libopenblas-dev \
liblapack-dev \
libsdl2-dev \
libboost-all-dev \
graphviz \
gcc \
g++ && \
ln -s /usr/bin/swig3.0 /usr/bin/swig

RUN pip install --upgrade pip==9.0.3 && \
pip install --upgrade numpy scipy && \
pip install --upgrade sklearn \
jupyter \
tqdm \
graphviz \
gym gym[box2d] gym[atari] \
matplotlib \
seaborn && \
pip install --upgrade https://github.com/Theano/Theano/archive/master.zip \
https://github.com/Lasagne/Lasagne/archive/master.zip \
https://github.com/yandexdataschool/AgentNet/archive/master.zip \
tensorflow \
https://download.pytorch.org/whl/cpu/torch-1.0.1.post2-cp27-cp27mu-linux_x86_64.whl \
torchvision \
keras

RUN pip install --upgrade gym_pull ppaquette-gym-doom


RUN pip3 install --upgrade pip==9.0.3 && \
pip3 install --upgrade numpy scipy && \
pip3 install --upgrade sklearn \
jupyter \
tqdm \
graphviz \
gym gym[box2d] gym[atari] \
matplotlib \
seaborn && \
pip3 install --upgrade https://github.com/Theano/Theano/archive/master.zip \
https://github.com/Lasagne/Lasagne/archive/master.zip \
https://github.com/yandexdataschool/AgentNet/archive/master.zip \
https://download.pytorch.org/whl/cpu/torch-1.0.1.post2-cp35-cp35m-linux_x86_64.whl \
torchvision \
tensorflow \
keras && \
python3 -m ipykernel.kernelspec
RUN conda env create -f /tmp/deeplearning.yaml && \
conda activate deeplearning && \
python -m ipykernel install --user --name python3 --display-name "Python 3"

RUN sudo rm /tmp/deeplearning*.yaml

EXPOSE 8888
VOLUME /notebooks
WORKDIR /notebooks
ENV PATH /opt/conda/bin:$PATH

COPY run_jupyter.sh /
CMD ["/run_jupyter.sh"]
23 changes: 17 additions & 6 deletions docker/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,36 +7,47 @@ _tl;dr [dockerhub url](https://hub.docker.com/r/justheuristic/practical_rl/)_
We recommend you to use either native docker (recommended for linux) or kitematic(recommended for windows).
* Installing [kitematic](https://kitematic.com/), a simple interface to docker (all platforms)
* Pure docker: Guide for [windows](https://docs.docker.com/docker-for-windows/), [linux](https://docs.docker.com/engine/installation/), or [macOS](https://docs.docker.com/docker-for-mac/).
* If you want to use your GPU make sure you have [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) and [NVidia driver](https://www.nvidia.com/en-us/drivers/unix/) + [CUDA 10.2](https://developer.nvidia.com/cuda-downloads) installed

Below are the instructions for both approaches.

## Kitematic
Find justheuristic/practical_rl in the search menu. Download and launch the container.
Find dmittov/practical_rl in the search menu. Download and launch the container.

Click on "web preview" screen in the top-right __or__ go to settings, ports and find at which port your jupyter is located, usually 32***.

## Native
`docker run --rm -it -v /path/to/your/repo:/notebooks -p <local_port>:8888 justheuristic/practical_rl`
`docker run --rm -it -v /path/to/your/repo:/notebooks -p <local_port>:8888 dmittov/practical_rl:spring2020-cpu`

For example,
```docker run --rm -it -v /home/myuser/Documents/practical_rl:/notebooks -p 8888:8888 justheuristic/practical_rl```
```docker run --rm -it -v /home/myuser/Documents/practical_rl:/notebooks -p 8888:8888 dmittov/practical_rl:spring2020-cpu```


Then you can access your jupyter in a browser at `localhost:<local_port>/?token=<token_you_see_in_container_logs>`, e.g. `localhost:8888/?token=ad1a5a0aab43efb47a9a805388fcf508d0b5f84a16e4542b&token=ad1a5a0aab43efb47a9a805388fcf508d0b5f84a16e4542b`

#### GPU
`docker run --rm -it -v /path/to/your/repo:/notebooks -p <local_port>:8888 --gpus all dmittov/practical_rl:spring2020-cuda-10.2`

## Manual
Build container

`$ docker build -t dl .`
`docker build -t practical_rl --build-arg device=cpu .`

to build GPU version

`docker build -t practical_rl --build-arg device=gpu .`

Run it

`$ docker run --rm -it -v <local_dir>:/notebooks -p <local_port>:8888 dl`
`$ docker run --rm -it -v <local_dir>:/notebooks -p <local_port>:8888 practical_rl`

to run GPU version

`$ docker run --rm -it -v <local_dir>:/notebooks -p <local_port>:8888 --gpus all practical_rl`

examples:

```$ docker run --rm -it -v `pwd`:/notebooks -p 8888:8888 dl```
```$ docker run --rm -it -v `pwd`:/notebooks -p 8888:8888 practical_rl```

Copy the token from console and run
http://localhost:8888/?token=<token>
32 changes: 32 additions & 0 deletions docker/deeplearning.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
name: deeplearning
channels:
- defaults
dependencies:
- graphviz
- python-graphviz
- ipykernel
- keras
- numpy=1.16.6
- pip
- scipy
- {tensorflow}=1.13.1
- tqdm
- pyopengl-accelerate
- {pytorch}
- torchvision
- opencv
- pip:
- atari-py
- sklearn
- matplotlib
- seaborn
- scikit-image
- imageio
- pyglet
- psutil
- gym
- gym[box2d]
- gym[atari]
- requests
- editdistance
prefix: /opt/conda/envs/deeplearning
3 changes: 1 addition & 2 deletions docker/run_jupyter.sh
Original file line number Diff line number Diff line change
@@ -1,3 +1,2 @@
#!/usr/bin/env bash
jupyter notebook --no-browser --allow-root --ip 0.0.0.0

jupyter notebook --no-browser --ip 0.0.0.0
11 changes: 4 additions & 7 deletions setup_colab.sh
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,8 +1,5 @@
#!/bin/bash
# a setup script for google colab. Will be updated
pip install gym
apt-get install -y xvfb
wget https://raw.githubusercontent.com/yandexdataschool/Practical_DL/fall18/xvfb -O ../xvfb
apt-get install -y python-opengl ffmpeg
pip install pyglet==1.2.4
#!/usr/bin/env bash

apt-get -qq update
apt-get -qq install -y xvfb
wget -q https://raw.githubusercontent.com/yandexdataschool/Practical_RL/spring20/xvfb -O ../xvfb
13 changes: 6 additions & 7 deletions week01_intro/README.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
## Materials:
* [__Lecture slides__](https://yadi.sk/i/-EUHXUXOTC5t9Q)
* __Russian:__
* Intro to RL - [video](https://yadi.sk/i/bMo0qa-x3DoqkS)
* Blackbox optimization - [video](https://yadi.sk/i/5yf_4oGI3EDJhJ)
* Seminar - [video](https://yadi.sk/i/dPsWYMK13EDJj7) _only covering crossentropy method_
* Intro to RL - [video](https://yadi.sk/i/HpRw6zYv3SPmFf)
* Seminar - [video](https://yadi.sk/i/gRTVCHfM3SPmHo)

* __English:__
* [__main__] Video-intro by David Silver (english) - [video](https://www.youtube.com/watch?v=2pWv7GOvuf0)
Expand All @@ -20,14 +19,14 @@
* About Differential evolution (english) - [pdf](http://jvanderw.une.edu.au/DE_1.pdf)
* Video on Ant Colony Algorithm (english) - [video](https://www.youtube.com/watch?v=D58nLNLkb0I)
* Longer video on Ant Colony Algorithm (english) - [video](https://www.youtube.com/watch?v=xpyKmjJuqhk)

* Longer video on corssentropy method (russian) - [video](https://yadi.sk/i/5yf_4oGI3EDJhJ)


## Practice assignment
Instant dive in: [__seminar_gym_interface__](https://colab.research.google.com/github/yandexdataschool/Practical_RL/blob/master/week01_intro/seminar_gym_interface.ipynb), [__crossentropy_method__](https://colab.research.google.com/github/yandexdataschool/Practical_RL/blob/master/week01_intro/crossentropy_method.ipynb)
Instant dive in: [__seminar_gym_interface__](https://colab.research.google.com/github/yandexdataschool/Practical_RL/blob/master/week01_intro/seminar_gym_interface.ipynb), [__crossentropy_method__](https://colab.research.google.com/github/yandexdataschool/Practical_RL/blob/master/week01_intro/crossentropy_method.ipynb),
[__deep_crossentropy_method__](https://colab.research.google.com/github/yandexdataschool/Practical_RL/blob/master/week01_intro/deep_crossentropy_method.ipynb)

* Open `gym_interface.ipynb` and follow instructions from there
* After you're done there, proceed to `crossentropy_method.ipynb`
* You can find homework and bonus assignment descriptions at the end of that notebook.
* Note: so far it's enough to say `pip install gym` on top of any data-science-stuffed python, but we'd appreciate if you gradually switch to [full installation](https://github.com/openai/gym#installing-everything).


Loading

1 comment on commit d51a1ee

@review-notebook-app
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review Jupyter notebook diffs for this commit on  ReviewNB

You can open a pull request to discuss changes and offer feedback.


Powered by ReviewNB

Please sign in to comment.