Skip to content

LlamaIndex (formerly GPT Index) is a data framework for your LLM applications

License

Notifications You must be signed in to change notification settings

xujryan/llama_index

 
 

Repository files navigation

🗂️ LlamaIndex 🦙

PyPI - Downloads GitHub contributors Discord

LlamaIndex (GPT Index) is a data framework for your LLM application.

PyPI:

LlamaIndex.TS (Typescript/Javascript): https://github.com/run-llama/LlamaIndexTS.

Documentation: https://docs.llamaindex.ai/en/stable/.

Twitter: https://twitter.com/llama_index.

Discord: https://discord.gg/dGcwcsnxhU.

Ecosystem

🚀 Overview

NOTE: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates!

Context

  • LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data.
  • How do we best augment LLMs with our own private data?

We need a comprehensive toolkit to help perform this data augmentation for LLMs.

Proposed Solution

That's where LlamaIndex comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools:

  • Offers data connectors to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.)
  • Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • Provides an advanced retrieval/query interface over your data: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output.
  • Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else).

LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs.

💡 Contributing

Interested in contributing? See our Contribution Guide for more details.

📄 Documentation

Full documentation can be found here: https://docs.llamaindex.ai/en/latest/.

Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources!

💻 Example Usage

pip install llama-index

Examples are in the examples folder. Indices are in the indices folder (see list of indices below).

To build a simple vector store index using OpenAI:

import os

os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

from llama_index import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(documents)

To build a simple vector store index using non-OpenAI LLMs, e.g. Llama 2 hosted on Replicate, where you can easily create a free trial API token:

import os

os.environ["REPLICATE_API_TOKEN"] = "YOUR_REPLICATE_API_TOKEN"

from llama_index.llms import Replicate

llama2_7b_chat = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e"
llm = Replicate(
    model=llama2_7b_chat,
    temperature=0.01,
    additional_kwargs={"top_p": 1, "max_new_tokens": 300},
)

# set tokenizer to match LLM
from llama_index import set_global_tokenizer
from transformers import AutoTokenizer

set_global_tokenizer(
    AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf").encode
)

from llama_index.embeddings import HuggingFaceEmbedding
from llama_index import ServiceContext

embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
service_context = ServiceContext.from_defaults(
    llm=llm, embed_model=embed_model
)

from llama_index import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(
    documents, service_context=service_context
)

To query:

query_engine = index.as_query_engine()
query_engine.query("YOUR_QUESTION")

By default, data is stored in-memory. To persist to disk (under ./storage):

index.storage_context.persist()

To reload from disk:

from llama_index import StorageContext, load_index_from_storage

# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="./storage")
# load index
index = load_index_from_storage(storage_context)

🔧 Dependencies

The main third-party package requirements are tiktoken, openai, and langchain.

All requirements should be contained within the setup.py file. To run the package locally without building the wheel, simply run:

pip install poetry
poetry install --with dev

📖 Citation

Reference to cite if you use LlamaIndex in a paper:

@software{Liu_LlamaIndex_2022,
author = {Liu, Jerry},
doi = {10.5281/zenodo.1234},
month = {11},
title = {{LlamaIndex}},
url = {https://github.com/jerryjliu/llama_index},
year = {2022}
}

About

LlamaIndex (formerly GPT Index) is a data framework for your LLM applications

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.7%
  • Jupyter Notebook 1.3%