This library implements OpenAI APIs with a low-level abstraction approach, supporting their REST and realtime APIs, request and response streaming, function calling and TikToken encoding.
Using the REST API, see https://platform.openai.com/docs/api-reference/making-requests
use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
Console::writeLine($ai->api('/responses')->invoke([
'model' => 'gpt-4o-mini',
'input' => $prompt,
]));
The REST API can use server-sent events to stream responses, see https://platform.openai.com/docs/api-reference/streaming
use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$events= $ai->api('/responses')->stream([
'model' => 'gpt-4o-mini',
'input' => $prompt,
]);
foreach ($events as $type => $value) {
Console::write('<', $type, '> ', $value);
}
Console::writeLine();
To access the result object, check for the response.completed event type and use its value. It contains the outuputs as well as model, filter results and usage information.
Encodes text to tokens. Download the vocabularies cl100k_base (used for GPT-3.5 and GPT-4.0) and o200k_base (used for Omni and O1) first!
use com\openai\{Encoding, TikTokenFilesIn};
$source= new TikTokenFilesIn('.');
// By name => [9906, 4435, 0]
$tokens= Encoding::named('cl100k_base')->load($source)->encode('Hello World!');
// By model => [13225, 5922, 0]
$tokens= Encoding::for('omni')->load($source)->encode('Hello World!');
Instead of encode(), you can use count() to count the number of tokens.
To create an embedding for a given text, use https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
Console::writeLine($ai->api('/embeddings')->invoke([
'input' => $text,
'model' => 'text-embedding-3-small'],
));
To stream generate audio, use the API's transmit() method, which sends the given payload and returns the response. See https://platform.openai.com/docs/guides/text-to-speech/overview
use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$payload= [
'input' => $input,
'voice' => 'alloy', // or: echo, fable, onyx, nova, shimmer
'model' => 'tts-1',
];
$stream= $ai->api('/audio/speech')->transmit($payload)->stream();
while ($stream->available()) {
Console::write($stream->read());
}
To convert audio into text, upload files via the API's open() method, which returns an Upload instance. See https://platform.openai.com/docs/guides/speech-to-text/overview
use com\openai\rest\OpenAIEndpoint;
use io\File;
use util\cmd\Console;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$file= new File($argv[1]);
$response= $ai->api('/audio/transcriptions')
->open(['model' => 'whisper-1'])
->transfer('file', $file->in(), $file->filename)
->finish()
;
Console::writeLine($response->value());
You can also stream uploads from InputStreams as follows:
// ...setup code from above...
$upload= $ai->api('/audio/transcriptions')->open(['model' => 'whisper-1']);
$stream= $upload->stream('file', 'audio.mp3');
while ($in->available()) {
$stream->write($in->read());
}
$response= $upload->finish();
Console::writeLine($response->value());
REST API calls can be traced with the logging library:
use com\openai\rest\OpenAIEndpoint;
use util\log\Logging;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$ai->setTrace(Logging::all()->toConsole());
// ...perform API calls...
There are two types of tools: Built-ins like file_search and code_interpreter (available in the assistants API) as well as custom functions, see https://platform.openai.com/docs/guides/function-calling
Custom functions map to instance methods in a class:
use com\openai\tools\Param;
use webservices\rest\Endpoint;
class Weather {
private $endpoint;
public function __construct(string $base= 'https://wttr.in/') {
$this->endpoint= new Endpoint($base);
}
public function in(#[Param] string $city): string {
return $this->endpoint->resource('/{0}?0mT', [$city])->get()->content();
}
}
The Param annnotation may define a description and a JSON schema type:
#[Param('The name of the city')] $name
#[Param(type: ['type' => 'string', 'enum' => ['C', 'F']])] $unit
Custom functions are registered in a Functions
instance and passed via tools inside the payload.
use com\openai\rest\OpenAIEndpoint;
use com\openai\tools\{Tools, Functions};
$functions= (new Functions())->register('weather', new Weather());
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$payload= [
'model' => 'gpt-4o-mini',
'tools' => new Tools($functions),
'input' => [['type' => 'message', 'role' => 'user', 'content' => $content]],
];
If tool calls are requested by the LLM, invoke them and return to next completion cycle. See https://platform.openai.com/docs/guides/function-calling/configuring-parallel-function-calling
use util\cmd\Console;
// ...setup code from above...
$calls= $functions->calls()->catching(fn($t) => $t->printStackTrace());
next: $result= $ai->api('/responses')->invoke($payload));
// If function calls are requested, invoke them and return to next response cycle
$invokations= false;
foreach ($result['output'] as $output) {
if ('function_call' !== $output['type']) continue;
$invokations= true;
$return= $calls->call($call['name'], $call['arguments']);
$payload['input'][]= $call;
$payload['input'][]= [
'type' => 'function_call_output',
'call_id' => $call['call_id'],
'output' => $return,
];
}
if ($invokations) goto next;
// Print out final result
Console::writeLine($result);
Functions can be passed a context as follows by annotating parameters with the Context annotation:
use com\mongodb\{Collection, Document, ObjectId};
use com\openai\tools\{Context, Param};
// Declaration
class Memory {
public function __construct(private Collection $facts) { }
public function store(#[Context] Document $user, #[Param] string $fact): ObjectId {
return $this->facts->insert(new Document(['owner' => $user->id(), 'fact' => $fact]))->id();
}
}
// ...shortened for brevity...
$context= ['user' => $user];
$return= $calls->call($call['name'], $call['arguments'], $context);
These endpoints differ slightly in how they are invoked, which is handled by the AzureAI implementation. See https://learn.microsoft.com/en-us/azure/ai-services/openai/overview
use com\openai\rest\AzureAIEndpoint;
use util\cmd\Console;
$ai= new AzureAIEndpoint(
'https://'.getenv('AZUREAI_API_KEY').'@example.openai.azure.com/openai/deployments/mini',
'2025-03-01-preview'
);
Console::writeLine($ai->api('/responses')->invoke([
'model' => 'gpt-4o-mini',
'input' => $prompt,
]));
The Distributed endpoint allows to distribute requests over multiple endpoints. The ByRemainingRequests class uses the x-ratelimit-remaining-requests
header to determine the target. See https://platform.openai.com/docs/guides/rate-limits
use com\openai\rest\{AzureAIEndpoint, Distributed, ByRemainingRequests};
use util\cmd\Console;
$endpoints= [
new AzureAIEndpoint('https://[email protected]/openai/deployments/mini', '2024-02-01'),
new AzureAIEndpoint('https://[email protected]/openai/deployments/mini', '2024-02-01'),
];
$ai= new Distributed($endpoints, new ByRemainingRequests());
Console::writeLine($ai->api('/responses')->invoke([
'model' => 'gpt-4o-mini',
'input' => $prompt,
]));
foreach ($endpoints as $i => $endpoint) {
Console::writeLine('Endpoint #', $i, ': ', $endpoint->rateLimit());
}
For more complex load balancing, have a look at this blog article using Azure API management
The realtime API allows streaming audio and/or text to and from language models, see https://platform.openai.com/docs/guides/realtime
use com\openai\realtime\RealtimeApi;
use util\cmd\Console;
$api= new RealtimeApi('wss://api.openai.com/v1/realtime?model=gpt-4o-realtime-preview');
$session= $api->connect([
'Authorization' => 'Bearer '.getenv('OPENAI_API_KEY'),
'OpenAI-Beta' => 'realtime=v1',
];
Console::writeLine($session);
// Send prompt
$api->transmit([
'type' => 'conversation.item.create',
'item' => [
'type' => 'message',
'role' => 'user',
'content' => [['type' => 'input_text', 'text' => $message]],
]
]);
// Receive response(s)
$api->send(['type' => 'response.create', 'response' => ['modalities' => ['text']]]);
do {
$event= $api->receive();
Console::writeLine($event);
} while ('response.done' !== $event['type'] && 'error' !== $event['type']);
$api->close();
For Azure AI, the setup code is slightly different:
use com\openai\realtime\RealtimeApi;
use util\cmd\Console;
$api= new RealtimeApi('wss://example.openai.azure.com/openai/realtime?'.
'?api-version=2024-10-01-preview'.
'&deployment=gpt-4o-realtime-preview'
);
$session= $api->connect(['api-key' => getenv('AZUREAI_API_KEY')]);
To use the legacy (but industry standard) chat completions API, see https://platform.openai.com/docs/quickstart?api-mode=chat:
use com\openai\rest\OpenAIEndpoint;
use util\cmd\Console;
$ai= new OpenAIEndpoint('https://'.getenv('OPENAI_API_KEY').'@api.openai.com/v1');
$flow= $ai->api('/chat/completions')->flow([
'model' => 'gpt-4o-mini',
'messages' => [['role' => 'user', 'content' => $prompt]],
]);
$flow= $ai->api('/chat/completions')->flow($payload);
foreach ($flow->deltas() as $type => $delta) {
Console::writeLine('<', $type, '> ', $delta);
}
Console::writeLine();
The result object is computed from the streamed deltas and can be retrieved by accessing $flow->result().