Skip to content

xnd-project/xnd-benchmarks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

XND compared with NumPy

Data conversion from Python values

Sometimes data is naturally in Python object form, for example when using Python's JSON module. This benchmark compares reading a list of int64 values. XND is faster both for type inference and if a dtype is given. The fastest possible way for XND is to read data with a schema-like full type:

$ python data_conversion_int64.py

Type inference
--------------

   xnd:   0.21521806716918945
   numpy: 0.4042797088623047

Dtype provided
--------------

   xnd:   0.17266035079956055
   numpy: 0.4040689468383789

Full type provided
-------------------

   xnd:   0.10901474952697754

This benchmark compares reading a list of tuples, the example is from the NumPy documentation. NumPy is omitted from the type inference section since it infers the "O" python object type:

$ python data_conversion_tuple.py 

Type inference
---------------

xnd:   0.9455676078796387

Dtype provided
--------------

xnd:   1.0472655296325684
numpy: 1.2794170379638672

Full type provided
-------------------

xnd:   0.7372479438781738

Subarray views

This benchmark measures creating subarray views:

$ python subarray.py

Small subarray view
-------------------

   xnd:   0.1433429718017578
   numpy: 0.11738085746765137

Medium sized subarray view
--------------------------

   xnd:   0.24525141716003418
   numpy: 0.24730181694030762

Accessing elements

This benchmark measures accessing elements:

$ python elements.py

Accessing an element in a small array
-------------------------------------

   xnd:   0.23404860496520996
   numpy: 0.1790611743927002

Accessing an element in a medium sized array
--------------------------------------------

   xnd:   0.35030698776245117
   numpy: 0.3094639778137207

Accessing an element in an array of tuples
------------------------------------------

   xnd:   0.24957680702209473
   numpy: 0.7213478088378906

Releases

No releases published

Packages

No packages published

Languages