-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f5bbdd1
commit b5c2b16
Showing
18 changed files
with
2,449 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
|
||
####### | ||
setwd('/work3/maize_eGWAS/figures/Fig1_code/') | ||
suppressPackageStartupMessages({ | ||
library(ggpubr) | ||
library(cowplot) | ||
}) | ||
|
||
npg<-ggsci::pal_npg('nrc')(10) | ||
hb<-read.csv('e340_Heritability.csv',row.names = 1) | ||
|
||
#### Hb histgram | ||
p1<-ggplot(hb,aes(Hb)) + | ||
stat_bin(breaks=seq(0,1,0.05),fill='gray',color=1) + | ||
theme_classic(12) + | ||
theme(axis.text = element_text(colour = 'black'), | ||
axis.ticks = element_line(colour = 'black')) + | ||
xlab(bquote(H^2)) + ylab('Number of genes') + | ||
scale_x_continuous(expand = expansion(c(0,0.05)),limits = c(0,1)) + | ||
scale_y_continuous(expand = expansion(c(0,0.05))) | ||
|
||
#### Hb 2D density | ||
p2<-ggplot(hb,aes(log2GEMean,Hb)) + | ||
stat_density_2d(geom='polygon',aes(fill = after_stat(level)), | ||
breaks=seq(0,1,0.05)) + | ||
scale_fill_distiller(palette=12, direction=1) + | ||
xlab(bquote(log[2](FPKM))) + ylab(bquote(H^2)) + | ||
theme_classic(12) + | ||
theme(legend.position = c(0.9,0.8),legend.key.size = unit(12,'point'), | ||
axis.text = element_text(colour = 'black'), | ||
axis.ticks = element_line(colour = 'black')) + | ||
scale_x_continuous(expand = expansion(c(0,0.05)),limits = c(0,NA)) + | ||
scale_y_continuous(expand = expansion(c(0,0.05)),limits = c(0,1)) | ||
|
||
|
||
#### Volcano plot | ||
library(EnhancedVolcano) | ||
vol <- read.csv('Hb_GO_redundancyReduced.csv',row.names=1) | ||
head(vol) | ||
max(vol[which(vol$FDR<=0.05),"pValue"]) | ||
|
||
BP = vol$desc[vol$Category =='Biological process'] | ||
CC = vol$desc[vol$Category =='Cellular component'] | ||
MF = vol$desc[vol$Category =='Molecular function'] | ||
celltype1 <- BP | ||
celltype2 <- MF | ||
keyvals.shape <- ifelse(vol$desc %in% celltype1, 17, | ||
ifelse(vol$desc %in% celltype2, 19, 18)) | ||
|
||
keyvals.shape[is.na(keyvals.shape)] <-18 | ||
names(keyvals.shape)[keyvals.shape == 18] <- 'Cellular component' | ||
names(keyvals.shape)[keyvals.shape == 17] <- 'Biological process' | ||
names(keyvals.shape)[keyvals.shape == 19] <- 'Molecular function' | ||
volSig = subset(vol, abs(log2FoldChange)>log2(1.2) & FDR <=0.05) # & Category != 'Cellular component') | ||
rownames(volSig) | ||
|
||
p3 <- EnhancedVolcano(vol,lab = vol$desc,x = 'log2FoldChange',y = 'pValue', | ||
shapeCustom = keyvals.shape, | ||
pCutoff = 4.94e-05, FCcutoff = log2(1.1), colAlpha = .7, | ||
ylim = c(0, 12), xlim = c(-0.8,0.8), | ||
pointSize = 2, | ||
labSize = 2, | ||
caption = 'total = 981 GO terms', | ||
gridlines.major = T,gridlines.minor = F, | ||
title = NULL, subtitle = NULL, | ||
xlab = bquote(log[2]("fold change")), | ||
ylab = bquote(-log[10](italic(P))), | ||
borderWidth = 1.5, | ||
legendLabSize=9, | ||
legendIconSize = 2.5, | ||
drawConnectors = F) + | ||
theme_classic(12) + | ||
scale_y_continuous(expand = expansion(c(0,0.05)),limits = c(0,12)) + | ||
guides(color = FALSE) + xlim(-1,0.6) + | ||
theme(legend.position = 'top', legend.title = element_blank(), | ||
legend.text = element_text(size=9), | ||
axis.text = element_text(colour = 'black'), | ||
axis.ticks = element_line(colour = 'black')) | ||
|
||
#### Hb_Trop_VS_Temperate | ||
df <- read.csv('Hb_Trop_VS_Temperate.csv',row.names = 1) | ||
df <- subset(df, HbTemp >0 & HbTrop > 0) | ||
|
||
p4<-ggplot(data = df, aes(HbTemp, HbTrop)) + | ||
stat_density_2d(aes(fill = ..level..), geom='polygon') + | ||
# geom_smooth(position = 'identity', method = lm) + | ||
scale_fill_distiller(palette=12, direction=1) + | ||
theme(legend.position='right')+ | ||
xlim(0,1) + ylim(0,1) + | ||
xlab(bquote(H^2~"Tropical")) + | ||
ylab(bquote(H^2~"Temperate")) + | ||
theme_classic(12) | ||
# coef <- round(coef(lm(HbTemp~HbTrop, df)), 2) | ||
# p4 <- p4 + annotate("text", x=0.05, y= 0.95, hjust=0, col=2, size=4, fontface="italic", | ||
# label=substitute(y==a*x+b, list(a=coef[2], b=coef[1]))) + | ||
# theme(legend.position = c(0.9,0.3),legend.key.size = unit(12,'point'), | ||
# axis.text = element_text(colour = 'black'), | ||
# axis.ticks = element_line(colour = 'black')) + | ||
# scale_x_continuous(expand = expansion(c(0,0.05)),limits = c(0,1)) + | ||
# scale_y_continuous(expand = expansion(c(0,0.05)),limits = c(0,1)) | ||
p4 | ||
|
||
p5<-ggplot(data.frame(x=c(df$HbTemp, df$HbTrop), | ||
y=rep(c("Temperate","Tropical"),each=nrow(df))), | ||
aes(x, fill=y, color=y)) + | ||
geom_density(alpha=0.3,lwd=1,show.legend = T) + | ||
theme_classic(12) + | ||
labs(x=bquote(H^2), y='Density') + | ||
scale_x_continuous(expand = expansion(c(0,0.05)),limits = c(0,1)) + | ||
scale_y_continuous(expand = expansion(c(0,0.05)),limits = c(0,NA)) + | ||
theme(legend.position = c(0.8,0.9),legend.title = element_blank(), | ||
legend.key.size = unit(12,'point'), legend.text = element_text(size=8), | ||
axis.text = element_text(colour = 'black'), | ||
axis.ticks = element_line(colour = 'black')) | ||
|
||
#### | ||
pc1 <- plot_grid(p1,p2,align = 'v',ncol=1,labels = letters[1:2]) | ||
pc2 <- plot_grid(p3,labels=letters[3]) | ||
pc3 <- plot_grid(p4,p5,align = 'v',ncol=1,labels = letters[4:5]) | ||
|
||
pdf(width = 10,height = 6, file='../Fig1.pdf') | ||
plot_grid(pc1,pc2,pc3,nrow=1,rel_widths = c(1,1.5)) | ||
dev.off() | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
#factor: | ||
options(stringsAsFactors = FALSE) | ||
rm(list=ls()) | ||
gc() | ||
library('lme4') | ||
library('parallel') | ||
|
||
################### Heritability for Tropical lines ############################ | ||
dfTrop <- read.csv('e340_trop_repUnmerged_Untransformed_fpkm.csv', header= TRUE, | ||
check.names = FALSE, row.names = 1) | ||
|
||
|
||
###### only use duplicated genotypes ##### | ||
cn = colnames(dfTrop) | ||
idx = colnames(dfTrop) %in% colnames(dfTrop)[duplicated(colnames(dfTrop))] | ||
dfTrop <- dfTrop[, idx] | ||
colnames(dfTrop) = cn[idx] | ||
length(unique(colnames(dfTrop))) | ||
group <- factor(colnames(dfTrop)) | ||
geneList = rownames(dfTrop) | ||
|
||
############### Run mixed linear model ############################ | ||
HbTrop <- pbapply::pblapply(seq_along(geneList), function(i){ | ||
trait = geneList[i] | ||
gexp = as.numeric(dfTrop[trait, ]) | ||
model = lmer(gexp ~ (1|group)) | ||
varComp <- as.data.frame(VarCorr(model,comp='vcov')) | ||
sigmas <- varComp$vcov | ||
H2 <- sigmas[1]/sum(sigmas) | ||
H2 | ||
}, cl=32) | ||
|
||
################### Heritability for Temperate lines ########################### | ||
dfTemp <- read.csv('e340_temp_repUnmerged_Untransformed_fpkm.csv', header= TRUE, check.names = FALSE, row.names = 1) | ||
#################### only use duplicated genotypes ############################# | ||
cn = colnames(dfTemp) | ||
idx = colnames(dfTemp) %in% colnames(dfTemp)[duplicated(colnames(dfTemp))] | ||
dfTemp <- dfTemp[, idx] | ||
colnames(dfTemp) = cn[idx] | ||
length(unique(colnames(dfTemp))) | ||
group <- factor(colnames(dfTemp)) | ||
geneList = rownames(dfTemp) | ||
################## Run the mixed linear model ################################## | ||
HbTemp <- pbapply::pblapply(seq_along(geneList), function(i){ | ||
trait = geneList[i] | ||
gexp = as.numeric(dfTemp[trait, ]) | ||
model = lmer(gexp ~ (1|group)) | ||
varComp <- as.data.frame(VarCorr(model,comp='vcov')) | ||
sigmas <- varComp$vcov | ||
H2 <- sigmas[1]/sum(sigmas) | ||
H2 | ||
}, cl=32) | ||
|
||
########################################### Combine ################################## | ||
library(ggplot2) | ||
library(grid) | ||
library(MASS) | ||
library(reshape2) | ||
library(reshape) | ||
HbTrop <- as.numeric(HbTrop) | ||
HbTemp <- as.numeric(HbTemp) | ||
dfHb_Comp = data.frame(HbTrop = HbTrop, HbTemp = HbTemp) | ||
rownames(dfHb_Comp) <- geneList | ||
write.csv(dfHb_Comp, file = 'Hb_Trop_VS_Temperate.csv') | ||
|
||
dfHb_Comp <- read.csv('Hb_Trop_VS_Temperate.csv', row.names = 1) | ||
dfHbTempLow <- subset(dfHb_Comp, dfHb_Comp$HbTrop*0.8 >= dfHb_Comp$HbTemp) | ||
write.csv(dfHbTempLow, file = 'TempHbLow.csv') | ||
write.csv(rownames(dfHbTempLow), file = 'HbTempLow.list', row.names = F, quote = F) | ||
|
||
|
||
#### plot the 2d density plot ####### | ||
dfHb_Comp <- read.csv('Hb_Trop_VS_Temperate.csv', row.names = 1) | ||
dfHb_Comp <- subset(dfHb_Comp, HbTemp >0 & HbTrop > 0) | ||
|
||
p1<- ggplot(data = dfHb_Comp, aes(HbTrop, HbTemp))+ | ||
stat_density_2d(aes(fill = ..level..), geom='polygon')+ | ||
geom_smooth(position = 'identity', method = lm)+ | ||
scale_fill_distiller(palette=12, direction=1) + | ||
theme(legend.position='right')+ | ||
xlim(0,1) + ylim(0,1) + | ||
xlab("H2 Tropical") + | ||
ylab("H2 Temperate") + | ||
theme_classic() | ||
|
||
coef <- round(coef(lm(HbTemp~HbTrop, dfHb_Comp)), 2) | ||
|
||
p1 = p1 + annotate("text", x=0.05, y= 1, hjust=0, col="red", size=4, fontface="italic", | ||
label=substitute(y==a*x+b, list(a=coef[1], b=coef[2]))) | ||
p1 | ||
|
||
########## distribution of the tropical H2 | ||
dfHb_Comp <- read.csv('Hb_Trop_VS_Temperate.csv') | ||
dfHb_trop_high <- subset(dfHb_Comp, HbTrop > HbTemp) | ||
dfHb_trop_low <- subset(dfHb_Comp, HbTrop < HbTemp) | ||
dfHb_trop_high$comparison = 'TropicalHigh' | ||
dfHb_trop_low$comparison = 'TropicalLow' | ||
dfHb_Comp_merge = rbind(dfHb_trop_high, dfHb_trop_low) | ||
|
||
ggplot(data = dfHb_Comp_merge, aes(HbTrop, fill = comparison)) + | ||
geom_density(alpha=0.4) + | ||
theme_classic() | ||
|
||
###################################################### | ||
################### Heritability for all 340 lines ############################ | ||
dfexp <- read.csv('eGWAS340_repUnmerged_Untransformed_fpkm.csv', header= TRUE, check.names = FALSE, row.names = 1) | ||
cn = colnames(dfexp) | ||
idx = colnames(dfexp) %in% colnames(dfexp)[duplicated(colnames(dfexp))] | ||
dfexp <- dfexp[, idx] | ||
colnames(dfexp) = cn[idx] | ||
length(unique(colnames(dfexp))) | ||
|
||
group <- factor(colnames(dfexp)) | ||
gtList = unique(colnames(dfexp)) | ||
geneList = rownames(dfexp) | ||
HbOutput <- pbapply::pblapply(seq_along(geneList), function(i){ | ||
trait = geneList[i] | ||
gexp = as.numeric(dfexp[trait, ]) | ||
model = lmer(gexp ~ (1|group)) | ||
varComp <- as.data.frame(VarCorr(model,comp='vcov')) | ||
sigmas <- varComp$vcov | ||
H2 <- sigmas[1]/sum(sigmas) | ||
H2 | ||
},cl=32) | ||
|
||
Hb = unlist(HbOutput) | ||
gexpMeanlog <- log2(rowMeans(dfexp)) #[sapply(dfexp,is.numeric)])) | ||
dfHb = data.frame(geneID = geneList, Hb = Hb, log2GEMean = gexpMeanlog) | ||
write.csv(dfHb, file = 'e340_Heritability.csv') | ||
|
||
######################################################################################### | ||
library(ggplot2) | ||
library("ggpubr") | ||
dfHb <- read.csv('e340_Heritability.csv', row.names = 1, header = T) | ||
p1 <- ggplot(dfHb, aes(x=Hb)) + | ||
geom_histogram(bins = 20, color='black', fill='grey') + | ||
xlab(bquote(~H^2))+ | ||
ylab('Number of genes') + | ||
theme_bw()+ | ||
theme(panel.border = element_blank(), panel.grid.major = element_blank(), | ||
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black")) | ||
p1 | ||
#p1 <- p1 + theme(axis.text.y = element_text(face = 'bold', size = 10, colour = 'black'), axis.text.x = element_text(face='bold', size = 10, colour = 'black')) | ||
#p1 <- p1 + theme(axis.title.y = element_text(face = 'bold', size=10, colour = 'black'), title = element_text(face='bold', size=10, colour = 'black')) | ||
#p1 <- p1 + theme(axis.ticks.length = unit(.25,"cm"), axis.ticks = element_line(size=1,colour = 'black')) | ||
|
||
|
||
p2 <- ggplot(dfHb, aes(x=log2GEMean, y=Hb) ) + | ||
stat_density_2d(aes(fill = ..level..), geom='polygon')+ | ||
scale_fill_distiller(palette=12, direction=1) + | ||
scale_x_continuous(expand = c(0, 0)) + | ||
scale_y_continuous(expand = c(0, 0)) + | ||
theme(legend.position='right')+ | ||
xlab(bquote(~log[2](FPKM))) + | ||
ylab(bquote(~H^2)) | ||
p2 | ||
#p2 <- p2 + theme(axis.text.y = element_text(face = 'bold', size = 10, colour = 'black'), axis.text.x = element_text(face='bold', size = 10, colour = 'black')) | ||
#p2 <- p2 + theme(axis.title.y = element_text(face = 'bold', size=10, colour = 'black'), title = element_text(face='bold', size=10, colour = 'black')) | ||
#p2 <- p2 + theme(axis.ticks.length = unit(.15,"cm"), axis.ticks = element_line(size=0.5,colour = 'black')) | ||
library(ggrepel) | ||
library(gridExtra) | ||
grid.arrange(p1,p2, nrow=1) | ||
|
||
|
||
#################### Narrow sense heritability (use sommer) ################# | ||
rm(list=ls()) | ||
options(stringsAsFactors = FALSE) | ||
suppressPackageStartupMessages({ | ||
library(data.table) | ||
library(pbapply) | ||
library(snpStats) | ||
library(sommer) | ||
}) | ||
|
||
# get duplicated individuals | ||
dfexp <- fread("eGWAS340_repUnmerged_Untransformed_fpkm.csv",nrow=1) | ||
#group <- unique(colnames(dfexp))[-1] | ||
group <- unique(colnames(dfexp)[duplicated(colnames(dfexp))]) | ||
length(group) | ||
|
||
# calculate additive relationship matrix | ||
plink <- read.plink("../../geno340/snps_prune.bed") | ||
snp <- as(plink$genotypes[plink$fam$pedigree %in% group, ], 'numeric') | ||
A <- A.mat(snp - 1) | ||
dim(A) | ||
|
||
# get gene expression matrix | ||
f <- fread("eGWAS340_RepMerged_Untransformed_fpkm.csv", data.table = F) | ||
f[1:5,1:5] | ||
phe <- as.matrix(f[, match(group, colnames(f))]) | ||
rownames(phe) <- f$V1 | ||
traits <- rownames(phe) | ||
|
||
# calculate h2 | ||
dfh2 <- pblapply(seq_along(traits), function(i){ | ||
geneID <- traits[i] | ||
df2 <- data.frame(lineName=group, gexp=phe[geneID, ]) | ||
q <-mmer(gexp ~ 1, random = ~vsr(lineName, Gu=A), | ||
rcov = ~units, data = df2, tolParInv = 1e-3, | ||
verbose = FALSE) | ||
a <- vpredict(q, h2 ~ V1/(V1 + V2) ) | ||
a$Estimate | ||
}, cl = 32) | ||
|
||
dfh2 <- data.frame(geneID = traits, h2 = unlist(dfh2)) | ||
write.csv(dfh2, file='e340_narrow_hb.csv') | ||
|
||
###### | ||
dfh2 <- read.csv(file = "e340_narrow_hb.csv", row.names = 1) | ||
dfHb <- read.csv(file = 'e340_Heritability.csv', row.names = 1) | ||
dfHb <- subset(dfHb, Hb < 1 & Hb > 0) | ||
dfh2 <- subset(dfh2, h2 < 1 & h2 > 0) | ||
|
||
dfh = merge(dfh2, dfHb, by = 'geneID') | ||
head(dfh) | ||
|
||
|
||
library(ggplot2) | ||
|
||
p1 <- ggplot(dfh, aes(x=Hb, y = h2))+ | ||
stat_density_2d(aes(fill = ..level..), geom = "polygon", colour="white") + | ||
geom_smooth(method = lm, color = "red", fill = "#69b3a2", se=TRUE) + | ||
xlab('Broad sense heritability') + | ||
ylab('Narrow sense heritability') + | ||
theme_classic() | ||
p1 | ||
|
||
p2 <- ggplot(dfh, aes(x=Hb, y = h2)) + | ||
geom_point() + | ||
geom_smooth(method = lm, color = "red", fill = "#69b3a2", se=TRUE) + | ||
xlab('Broad sense heritability') + | ||
ylab('Narrow sense heritability') + | ||
theme_classic() | ||
p2 | ||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.