Skip to content

This document explains how to use three functions to calculate kernel density estimation (KDE), Moran's I statistic, Correlation, Wasserstein distance.

Notifications You must be signed in to change notification settings

wikk-chy/Spatialspots

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Usage Example

This document explains how to use three functions to calculate kernel density estimation (KDE), Moran's I statistic, Correlation, Wasserstein distance.

Function Imports

First, we need to import the necessary libraries and functions.

import numpy as np
import pandas as pd
from scipy.spatial import KDTree
from scipy.stats import wasserstein_distance
from sklearn.neighbors import KernelDensity
from scipy.sparse import csr_matrix
from tqdm import tqdm

# Import custom functions
from Spatialspots import calculate_kde, calculate_morans_i, calculate_wasserstein_distance

# Generate sample data
data = {
    "dim_1": np.random.rand(100),
    "dim_2": np.random.rand(100),
    "gene": np.random.choice(["geneA", "geneB", "geneC"], 100)
}
df = pd.DataFrame(data)
genes = ["geneA", "geneB", "geneC"]

# Calculate Kernel Density Estimation (KDE)
xy, densities = calculate_kde(df, genes, bandwidth=2, grid_size=10)

# Calculate Moran's I Statistic
morans_i_values = []
for density in densities:
    morans_i = calculate_morans_i(xy, density, threshold_distance=50)
    morans_i_values.append(morans_i)

# Calculate Wasserstein Distance
w_dis = calculate_wasserstein_distance(densities, xy, genes)

# Calculate Correlation
correlation = calculate_correlation(densities, genes=genes)

Moran's I

Calculate Moran's I for gene or cell distribution.

Wasserstein metric

Calculate the distribution distance between spots using the Wasserstein metric.

Correlation

Calculate the Correlation between spots

About

This document explains how to use three functions to calculate kernel density estimation (KDE), Moran's I statistic, Correlation, Wasserstein distance.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published