RISC-V CPU simulator for education purposes.
- QtRVSim - RISC-V architecture based edition (https://github.com/cvut/qtrvsim), suggested for future contributions
- QtMips development branch with little/endian support - devel
- Space for QtMips examples and students' contributions https://github.com/cvut/QtMips-Playground
Implemented to support following courses:
Faculty of Electrical Engineering Czech Technical University
- QtRVSim
- Try it out! (WebAssembly)
- Build and packages
- Documentation
- Accepted Binary Formats
- Integrated Assembler
- Support to call external make utility
- Advanced functionalities
- Special instructions support
- Limitations of the Implementation
- List of Actually Supported Instructions
- Links to Resources and Similar Projects
- Copyright
- License
QtRVSim is experimentally available for WebAssembly and it can be run in most browsers without installation. QtRVSim online
Note, that WebAssembly version is experimental. Please, report any difficulties via GitHub issues.
- Qt 5 (minimal tested version is 5.9.5)
- elfutils (optional; libelf works too but there can be some problems)
cmake -DCMAKE_BUILD_TYPE=Release /path/to/qtrvsim
make
Where /path/to/qtrvsim
is path to this project root. The built binaries are to be found in the directory target
in the build directory (the one, where cmake was called).
Install the latest version of Xcode from the App Store. Then open a terminal and execute xcode-select --install to install Command Line Tools. Then open Xcode, accept the license agreement and wait for it to install any additional components. After you finally see the "Welcome to Xcode" screen, from the top bar choose Xcode -> Preferences -> Locations -> Command Line Tools and select an SDK version.
Install Homebrew and use it to install Qt and libelf. (Installing libelf is optional. If libelf is not found in the system, local fallback is used.)
brew install qt libelf
Now build the project the same way as in general compilation (above).
- https://github.com/cvut/qtrvsim/releases
- archives with Windows and generic GNU/Linux binaries
- https://build.opensuse.org/repositories/home:jdupak/qtrvsim
- [https://software.opensuse.org/download.html?project=home%3Ajdupak&package=qtrvsim](https://software.opensuse.
org/download.html?project=home%3Ajdupak&package=qtrvsim)
- Open Build Service binary packages
QtRVSim provides a Nix package as a part of the repository. You can build and install it by a command bellow. Updates have to be done manually by checking out the git. NIXPKGS package is planned.
nix-env -if .
Tests are managed by CTest (part of CMake). To build and run all tests, use this commands:
cmake -DCMAKE_BUILD_TYPE=Release /path/to/qtRVSim
make
ctest
Main documentation is provided in this README and in subdirectories docs/user
and docs/developer
.
The project has started as diploma thesis work of Karel Kočí. The complete text of the thesis Graphical CPU Simulator with Cache Visualization is available from the online archive of the Czech Technical University in Prague. The document provides analysis of available alternative simulators, overview of the project architecture and basic usage information.
The project was extended as bachelor's theses of Jakub Dupak and Max Hollmann. Links will be provided as soon as the theses are released (TODO)
The simulator accepts ELF statically linked executables compiled for RISC-V target (--march=rv64g
). The simulator will
automatically select endianness based on the ELF header. Simulation will execute as XLEN=32.
- 64bit simulation is not yet supported.
- Compressed instructions are not yet supported.
You can use compile the code for simulation using specialized RISC-V GCC/Binutils toolchain (riscv32-elf
) or using
unified Clang/LLVM toolchain with LLD. If you have Clang installed, you don't need any
additional tools. Clang can be used on Linux, Windows, macOS and others...
clang --target=riscv32 -march=rv64g -nostdlib -static -fuse-ld=lld test.S -o test
llvm-objdump -S test
riscv32-elf-as test.S -o test.o
riscv32-elf-ld test.o -o test
riscv32-elf-objdump -S test
or
riscv32-elf-gcc test.S -o test
riscv32-elf-objdump -S test
Basic integrated assembler is included in the simulator. Small subset of
GNU assembler directives is recognized as well. Next directives are
recognized: .word
, .orig
, .set
/.equ
, .ascii
and .asciz
. Some other directives are simply ignored: .data
, .text
, .globl
, .end
and .ent
.
This allows to write code which can be compiled by both - integrated and full-featured assembler. Addresses are assigned
to labels/symbols which are stored in symbol table. Addition, subtraction, multiplication, divide and bitwise and or are
recognized.
The action "Build executable by external make" call "make" program. If the action is invoked, and some source editors selected in main windows tabs then the "make" is started in the corresponding directory. Else directory of last selected editor is chosen. If no editor is open then directory of last loaded ELF executable are used as "make" start path. If even that is not an option then default directory when the emulator has been started is used.
THIS PART IS FROM MIPS EDITION AND HAS NOT BEEN TESTED ON RISC-V
The simulator implements emulation of two peripherals for now. Base addresses are selected such way that they are
accessible by 16 immediate offset which uses register 0 (zero
) as base.
The first is simple serial port (UART). It support transmission
(Tx) and reception (Rx). Receiver status register (SERP_RX_ST_REG
)
implements two bits. Read-only bit 0 (SERP_RX_ST_REG_READY
)
is set to one if there is unread character available in the receiver data register (SERP_RX_DATA_REG
). The bit 1
(SERP_RX_ST_REG_IE
) can be written to 1 to enable interrupt request when unread character is available. The
transmitter status register (SERP_TX_ST_REG
) bit 0
(SERP_TX_ST_REG_READY) signals by value 1 that UART is ready and can accept next character to be sent. The bit 1
(SERP_TX_ST_REG_IE
) enables generation of interrupt. The register SERP_TX_DATA_REG
is actual Tx buffer. The LSB byte
of written word is transmitted to the terminal window. Definition of peripheral base address and registers
offsets (_o
) and individual fields masks (_m
) follows
#define SERIAL_PORT_BASE 0xffffc000
#define SERP_RX_ST_REG_o 0x00
#define SERP_RX_ST_REG_READY_m 0x1
#define SERP_RX_ST_REG_IE_m 0x2
#define SERP_RX_DATA_REG_o 0x04
#define SERP_TX_ST_REG_o 0x08
#define SERP_TX_ST_REG_READY_m 0x1
#define SERP_TX_ST_REG_IE_m 0x2
#define SERP_TX_DATA_REG_o 0x0c
The UART registers region is mirrored on the address 0xffff0000 to enable use of programs initially written for SPIM or MARS emulators.
The another peripheral allows to set three byte values concatenated to single word (read-only KNOBS_8BIT register)
from user panel set by knobs and display one word in hexadecimal, decimal and binary format (LED_LINE
register). There
are two other words writable which control color of RGB LED 1 and 2
(registers LED_RGB1
and LED_RGB2
).
#define SPILED_REG_BASE 0xffffc100
#define SPILED_REG_LED_LINE_o 0x004
#define SPILED_REG_LED_RGB1_o 0x010
#define SPILED_REG_LED_RGB2_o 0x014
#define SPILED_REG_LED_KBDWR_DIRECT_o 0x018
#define SPILED_REG_KBDRD_KNOBS_DIRECT_o 0x020
#define SPILED_REG_KNOBS_8BIT_o 0x024
The simple 16-bit per pixel (RGB565) framebuffer and LCD are implemented. The framebuffer is mapped into range starting
at LCD_FB_START
address. The display size is 480 x 320 pixel. Pixel format RGB565 expect red component in bits 11..15, green component
in bits 5..10 and blue component in bits 0..4.
#define LCD_FB_START 0xffe00000
#define LCD_FB_END 0xffe4afff
Limitation: actual concept of memory view updates and access does not allow to reliably read peripheral registers, and I/O memory content. It is possible to write into framebuffer memory when cached (from CPU perspective) access to memory is selected.
(NOTICE: Coprocessor0 will have to be replaced with RISC-V status registers)
List of interrupt sources:
Irq number | Cause/Status Bit | Source |
---|---|---|
2 / HW0 | 10 | Serial port ready to accept character to Tx |
3 / HW1 | 11 | There is received character ready to be read |
7 / HW5 | 15 | Counter reached value in Compare register |
Following coprocessor 0 registers are recognized
Number | Name | Description |
---|---|---|
$4,2 | UserLocal | Used as TLS base by operating system usually |
$8,0 | BadVAddr | Reports the address for the most recent address-related exception |
$9,0 | Count | Processor cycle count |
$11,0 | Compare | Timer interrupt control |
$12,0 | Status | Processor status and control |
$13,0 | Cause | Cause of last exception |
$14,0 | EPC | Program counter at last exception |
$15,1 | EBase | Exception vector base register |
$16,0 | Config | Configuration registers |
mtc0
and mfc0
are used to copy value from/to general puropose registers to/from comprocessor 0 register.
Hardware/special registers implemented:
Number | Name | Description |
---|---|---|
0 | CPUNum | CPU number, fixed to 0 |
1 | SYNCI_Step | Increment required for instruction cache synchronization |
2 | CC | Cycle counter |
3 | CCRes | Cycle counter resolution, fixed on 1 |
29 | UserLocal | Read only value of Coprocessor 0 $4,2 register |
Sequence to enable serial port receive interrupt:
Decide location of interrupt service routine the first. The default address is 0x80000180. The base can be
changed (EBase
register) and then PC is set to address EBase + 0x180. This is in accordance with MIPS release 1 and 2
manuals.
Enable bit 11 (interrupt mask) in the Status register. Ensure that bit 1 (EXL
)
is zero and bit 0 (IE
) is set to one.
Enable interrupt in the receiver status register (bit 1 of SERP_RX_ST_REG
).
Write character to the terminal. It should be immediately consumed by the serial port receiver if interrupt is enabled
in SERP_RX_ST_REG
. CPU should report interrupt exception and when it propagates to the execution phase PC
is set to
the interrupt routine start address.
Some hints how to direct linker to place interrupt handler routine at appropriate address. Implement interrupt routine in new section
.section .irq_handler, "ax"
Use next linker option to place section start at right address
-Wl,--section-start=.irq_handler=0x80000180
(Not tested for RISC-V; coprocessor0 will have to be replaced.)
The emulator includes support for a few Linux kernel systemcalls. The MIPS O32 ABI is used.
Register | use on input | use on output | Note |
---|---|---|---|
$at ($1) | — | (caller saved) | |
$v0 ($2) | syscall number | return value | |
$v1 ($3) | — | 2nd fd only for pipe(2) | |
$a0 ... $a2 ($4 ... $6) | syscall arguments | returned unmodified | |
$a3 ($7) | 4th syscall argument | $a3 set to 0/1 for success/error | |
$t0 ... $t9 ($8 ... $15, $24, $25) | — | (caller saved) | |
$s0 ... $s7 ($16 ... $23) | — | (callee saved) | |
$k0, $k1 ($26, $27) | |||
$gp ($28) | (callee saved) | ||
$sp ($29) | (callee saved) | ||
$fp or $s8 ($30) | (callee saved) | ||
$ra ($31) | (callee saved) | ||
$hi, $lo | — | (caller saved) |
The first four input arguments are passed in registers $a0 to $a3, if more arguments are required then fifth and following arguments are stored on the stack.
Supported syscalls:
void exit(int status) __NR_exit (4001)
Stop/end execution of the program. The argument is exit status code, zero means OK, other values informs about error.
ssize_t read(int fd, void *buf, size_t count) __NR_read (4003)
Read count
bytes from open file descriptor fd
. The emulator maps file descriptors 0, 1 and 2 to the internal
terminal/console emulator. They can be used without open
call. If there are no more characters to read from the
console, newline is appended. At most the count bytes read are stored to the memory location specified by buf
argument. Actual number of read bytes is returned.
ssize_t write(int fd, const void *buf, size_t count) __NR_write (4004)
Write count
bytes from memory location buf
to the open file descriptor
fd
. The same about console for file handles 0, 1 and 2 is valid as for read
.
int close(int fd) __NR_close (4006)
Close file associated to descriptor fd
and release descriptor.
int open(const char *pathname, int flags, mode_t mode) __NR_open (4005)
Open file and associate it with the first unused file descriptor number and return that number. If the
option OS Emulation
->Filesystem root
is not empty then the file path pathname
received from emulated environment is appended to the path specified
by Filesystem root
. The host filesystem is protected against attempt to traverse to random directory by use of ..
path elements. If the root is not specified then all open files are targetted to the emulated terminal.
void * brk(void *addr) __NR_brk (4045)
Set end of the area used by standard heap after end of the program data/bss. The syscall is emulated by dummy implementation. Whole address space up to 0xffff0000 is backuped by automatically attached RAM.
int ftruncate(int fd, off_t length) __NR_truncate (4092)
Set length of the open file specified by fd
to the new length
. The length
argument is 64-bit even on 32-bit system and for big-endian MIPS it is apssed as higher part and the lower part in the
second and third argument.
ssize_t readv(int fd, const struct iovec *iov, int iovcnt) __NR_Linux (4145)
The variant of read
system call where data to read are would be stored to locations specified by iovcnt
pairs of
base address, length pairs stored in memory at address pass in iov
.
ssize_t writev(int fd, const struct iovec *iov, int iovcnt) __NR_Linux (4146)
The variant of write
system call where data to write are defined by iovcnt
pairs of base address, length pairs stored in memory at address pass in iov
.
int set_thread_area(unsigned long addr) __NR_set_thread_area (4283)
Set TLS base into C0
user_local
register accessible by rdhwr
instruction..
(TODO Max)
This is initial implementation of the RISC-V edition. Everything is limited.
- Coprocessor0 has to be ported to RISC-V status registers.
- Only very minimal support for privileged instruction is implemented for now. Only RDHWR, SYNCI, CACHE and some coprocessor 0 registers implemented. TLB and virtual memory and complete exception model are not implemented.
- Coprocessors (so no floating point unit and only limited coprocessor 0)
- Memory access stall (stalling execution because of cache miss would be pretty annoying for users so difference between cache and memory is just in collected statistics)
- Only limited support for interrupts and exceptions. When
syscall
orbreak
instruction is recognized, emulation stops. Single step proceed after instruction.
- RV32G:
- LOAD:
lw, lh, lb
- STORE:
sw, sh, sb
- OP:
add, sub, sll, slt, sltu, xor, srl, sra, or, and
- OP-IMM:
addi, sll, slti, sltiu, xori, srli, srai, ori, andi
- LOAD:
For details about RISC-V, refer to the ISA specification: https://riscv.org/technical/specifications/.
- QtRVSim - MIPS predecessor of this simulator https://github.com/cvut/QtRVSim
- Jakub Dupak: [Graphical RISC-V Architecture Simulator - Memory Model and Project Management](https://dspace.cvut. cz/bitstream/handle/10467/94446/F3-BP-2021-Dupak-Jakub-thesis.pdf) documents QtMips and QtRvSim development
- Copyright (c) 2017-2019 Karel Koci [email protected]
- Copyright (c) 2019-2021 Pavel Pisa [email protected]
- Copyright (c) 2020-2021 Jakub Dupak [email protected]
- Copyright (c) 2020-2021 Max Hollmann [email protected]
This project is licensed under GPL-3.0-or-later
. The full text of the license is in the LICENSE file.
The license applies to all files except for directories named external
and files in them. Files in external
directories have a separate license compatible with the projects license.
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.