Skip to content

whitekuj02/deep-fake-audio-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SW중심대학 경진대회 (AI부문)

주제: 생성 AI의 가짜(Fake) 음성 검출 및 탐지
기간: 2024.07.01 ~ 2024.07.19
결과: 219팀 중 10위
소속: 가천대학교 AI소프트웨어학부


MOTA

유종문 김의진 장희진 윤세현 최상현

1. 설명

AASIST with augmented audio (rawboost, DANN)

Audio augmentation process


AASIST + DANN Training / Inferencing


AASIST with denoised audio (deepfilternet)

Audio denoising process


AASIST Training / Inferencing


2. 시작

  1. Docker 설정
docker pull pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel
docker run -it --gpus all pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel
  1. 데이터셋 다운로드
sh ./code/1_prepare_data/download.sh
  1. Anaconda 가상환경 생성
conda create -n mota python=3.10.13 -y
conda activate mota
  1. 데이터 전처리
sh ./code/1_prepare_data/run.sh
  1. AASIST + DANN + Rawboost
sh ./code/2_aasist_rawboost/run.sh
  1. AASIST + Denoise
sh ./code/3_aasist_denoise/run.sh
  1. 앙상블
sh ./code/4_ensemble/run.sh

3. 실험 환경

  • Ubuntu 22.04.3 LTS
  • NVIDIA RTX 4090
  • AMD EPYC 7402 24-cores
  • 기타 환경 environment.yaml 참고

deepfilternet            0.5.6
librosa                  0.10.2.post1
soundfile                0.12.1
pandas                   2.2.2
pydub                    0.25.1
torch                    2.3.1
torchaudio               2.3.1
torchcontrib             0.0.2
tensorboard              2.17.0
tqdm                     4.66.4

4. 사전 학습 모델

  1. AST (MIT/ast-finetuned-audioset-10-10-0.4593) : masking
    https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593

  2. DeepFilterNet : Denoising
    https://github.com/Rikorose/DeepFilterNet


5. 사용된 기법

  • 데이터 증강 : Rawboost, Audio mixing (overlapping)
  • 모델 : AASIST, DANN(Domain Adversarial Neural Network)
  • 데이터 전처리 : DeepFilterNet
  • 결과 후처리 : AST(Audio Spectrogram Transformer)

6. 성능 평가지표

$$ score = 0.5 \times (1 - \text{mean AUC}) + 0.25 \times \text{mean Brier} + 0.25 \times \text{mean ECE} $$

  • $\text{AUC}$ : Area Under the Curve (설명)
  • $\text{Brier}$ : (설명)
  • $\text{ECE}$ : Expected Calibration Error (설명)

7. 참조

  • [1] SW중심대학 디지털 경진대회_SW와 생성AI의 만남 : AI 부문 (링크)

  • [2] AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks (논문, 구현)

  • [3] Domain-Adversarial Training of Neural Networks (논문, 구현)

  • [4] Audio Spectrogram Trnasformer (링크)

  • [5] DeepFilterNet (구현)

  • [6] RawBoost: A Raw Data Boosting and Augmentation Method applied to Automatic Speaker Verification Anti-Spoofing (논문, 구현)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published