Welcome to the repository! Here are collected plots for analysis of country's socio-economic status. It is aimed primarily for academia of Social Science, such as Economists, Sociologists and Political Scientists, but also can be applied in other places (for example, Marketing).
Looking at this bubble plot, you may notice that there is no linear relationship between income and life expectancy in Russia. The reason is due to some regions: for example, Causasian regions show high life expectancy at lower incomes whereas Siberian, Ural and Far Eastern regions experience opposite situation with higher incomes and lower life expectancies. When reducing these regions from our data set, we will see ordinary linear relationship where the more regions earn the longer they live.
Call:
lm(formula = `Life Expectancy` ~ Population, data = df.new.rus)
Residuals:
Min 1Q Median 3Q Max
-4.1895 -1.0596 -0.4618 0.5349 11.3026
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.904e+01 3.426e-01 201.535 <2e-16 ***
Population 3.416e-07 1.349e-07 2.533 0.0135 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.223 on 73 degrees of freedom
Multiple R-squared: 0.0808, Adjusted R-squared: 0.06821
F-statistic: 6.417 on 1 and 73 DF, p-value: 0.01345
Call:
lm(formula = Difference ~ Population, data = df.new.rus)
Residuals:
Min 1Q Median 3Q Max
-4.4040 -0.5194 0.3089 0.6438 1.9079
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.368e+00 1.822e-01 51.419 <2e-16 ***
Population -1.416e-07 7.172e-08 -1.974 0.0521 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.182 on 73 degrees of freedom
Multiple R-squared: 0.05069, Adjusted R-squared: 0.03769
F-statistic: 3.898 on 1 and 73 DF, p-value: 0.05213
Call:
lm(formula = `Fertility Rate` ~ Income, data = df.new.rus)
Residuals:
Min 1Q Median 3Q Max
-0.57911 -0.16194 -0.02601 0.10487 1.36567
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2707604 0.0759405 16.734 <2e-16 ***
Income 0.0002861 0.0001121 2.552 0.0128 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.275 on 73 degrees of freedom
Multiple R-squared: 0.0819, Adjusted R-squared: 0.06932
F-statistic: 6.512 on 1 and 73 DF, p-value: 0.01281
Call:
lm(formula = `Fertility Rate` ~ Difference, data = df.new.rus)
Residuals:
Min 1Q Median 3Q Max
-0.54230 -0.18179 -0.01519 0.12357 0.97884
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.27520 0.23537 9.667 1.06e-14 ***
Difference -0.09074 0.02556 -3.550 0.000679 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.265 on 73 degrees of freedom
Multiple R-squared: 0.1472, Adjusted R-squared: 0.1355
F-statistic: 12.6 on 1 and 73 DF, p-value: 0.0006791
Fig. 26. 3D Bubble Plot of Life Expectnacy Difference between Females, Income and Males and Fertility Rate
Call:
lm(formula = `Fertility Rate` ~ Income + Difference, data = df.new.rus)
Residuals:
Min 1Q Median 3Q Max
-0.54541 -0.15263 -0.00404 0.13997 0.98702
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0857680 0.2377793 8.772 5.56e-13 ***
Income 0.0002722 0.0001041 2.616 0.010846 *
Difference -0.0883285 0.0246137 -3.589 0.000603 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.255 on 72 degrees of freedom
Multiple R-squared: 0.2212, Adjusted R-squared: 0.1996
F-statistic: 10.22 on 2 and 72 DF, p-value: 0.0001234
Region | Federal District | Fertility Rate | Difference | Income | Life Expectancy | Population |
---|---|---|---|---|---|---|
Adygea | Southern | 1.31 | 9.16 | 435.07 | 71.22 | 496934 |
Altai Krai | Siberian | 1.35 | 9.02 | 402.33 | 68.6 | 2163693 |
Amur | Far Eastern | 1.46 | 9.36 | 747.16 | 66.3 | 766912 |
Arkhangelsk | Northwestern | 1.49 | 10.75 | 760.29 | 69.6 | 978873 |
Astrakhan | Southern | 1.63 | 8.01 | 538.66 | 69.9 | 960142 |
Bashkortostan | Volga | 1.41 | 9.34 | 522.24 | 69.49 | 4091423 |
Belgorod | Central | 1.17 | 8.12 | 506.96 | 70.67 | 1540486 |
Bryansk | Central | 1.2 | 10.31 | 443.45 | 68.67 | 1169161 |
Buryatia | Siberian | 1.68 | 9.69 | 591.56 | 68.91 | 978588 |
Chechnya | North Caucasian | 2.74 | 4.75 | 361.99 | 73 | 1510824 |
Chelyabinsk | Ural | 1.47 | 9.43 | 549.82 | 69.16 | 3431224 |
Chukotka | Far Eastern | 1.66 | 8.7 | 1565.56 | 64.87 | 47490 |
Chuvashia | Volga | 1.42 | 10.51 | 439.56 | 69.99 | 1186909 |
Dagestan | North Caucasian | 1.73 | 4.89 | 380.96 | 76.59 | 3182054 |
Ingushetia | North Caucasian | 1.83 | 6.03 | 408.11 | 80.52 | 509541 |
Irkutsk | Siberian | 1.69 | 9.79 | 691.84 | 66.8 | 2370102 |
Ivanovo | Central | 1.37 | 9.83 | 387.16 | 69.02 | 927828 |
Jewish AO | Far Eastern | 1.62 | 8.85 | 616.3 | 66.12 | 150453 |
Kabardino-Balkaria | North Caucasian | 1.51 | 7.41 | 382.8 | 73.77 | 904200 |
Kaliningrad | Northwestern | 1.26 | 8.74 | 497.54 | 70.99 | 1029966 |
Kalmykia | Southern | 1.43 | 8.16 | 414.18 | 71.4 | 267133 |
Kaluga | Central | 1.34 | 9.81 | 565.12 | 69.16 | 1069904 |
Karachay-Cherkessia | North Caucasian | 1.3 | 8.07 | 381.6 | 73.47 | 469865 |
Karelia | Northwestern | 1.5 | 10.38 | 627.02 | 67.31 | 533121 |
Khakassia | Siberian | 1.54 | 9.43 | 588.49 | 68.49 | 534795 |
Khanty-Mansi AO | Ural | 1.67 | 7.22 | 1079.29 | 72.01 | 1711480 |
Kirov | Volga | 1.5 | 9.88 | 441.99 | 69.73 | 1153680 |
Komi | Northwestern | 1.53 | 9.6 | 774.88 | 68.32 | 737853 |
Kostroma | Central | 1.52 | 9.43 | 427.29 | 68.78 | 580976 |
Kurgan | Ural | 1.68 | 10.19 | 438.46 | 68.29 | 776661 |
Kursk | Central | 1.29 | 8.85 | 499.09 | 68.56 | 1082458 |
Leningrad | Northwestern | 0.87 | 9.51 | 623.34 | 70.17 | 2000997 |
Lipetsk | Central | 1.2 | 9.41 | 485.19 | 68.58 | 1143224 |
Magadan | Far Eastern | 1.43 | 10.03 | 1360.58 | 67.41 | 136085 |
Mari El | Volga | 1.41 | 11.18 | 430.09 | 69.46 | 677097 |
Mordovia | Volga | 1.03 | 8.11 | 436.91 | 70.24 | 783552 |
Moscow | Central | 1.33 | 9.07 | 737.57 | 70.35 | 8524665 |
Moscow City | Central | 1.42 | 6.94 | 1249.13 | 74.55 | 13010112 |
Murmansk | Northwestern | 1.47 | 9.13 | 1005.29 | 68.29 | 667744 |
Nenets AO | Northwestern | 1.84 | 10.83 | 1191.59 | 69.39 | 41434 |
Nizhny Novgorod | Volga | 1.31 | 10.16 | 483.85 | 68.93 | 3119115 |
North Ossetia | North Caucasian | 1.59 | 8.38 | 394.68 | 72.47 | 687357 |
Novgorod | Northwestern | 1.32 | 10.32 | 494.79 | 67.64 | 583387 |
Novosibirsk | Siberian | 1.49 | 9.61 | 553.34 | 69.19 | 2797176 |
Omsk | Siberian | 1.52 | 8.97 | 497.24 | 69.02 | 1858798 |
Orenburg | Volga | 1.46 | 8.57 | 485.87 | 68.21 | 1862767 |
Oryol | Central | 1.21 | 9.77 | 434.26 | 68.97 | 713374 |
Penza | Volga | 1.19 | 9.58 | 441.73 | 69.97 | 1266348 |
Primorsky Krai | Far Eastern | 1.43 | 9.47 | 678.8 | 68.61 | 1845165 |
Pskov | Northwestern | 1.33 | 9.82 | 420.9 | 67.69 | 599084 |
Rostov | Southern | 1.25 | 7.87 | 470.3 | 69.79 | 4200729 |
Ryazan | Central | 1.14 | 9.35 | 484.23 | 68.61 | 1102810 |
Saint Petersburg | Northwestern | 1.28 | 8.07 | 886.79 | 72.51 | 5601911 |
Sakha | Far Eastern | 1.62 | 8.82 | 1113.66 | 69.98 | 995686 |
Sakhalin | Far Eastern | 1.81 | 9.69 | 1160.59 | 68.42 | 466609 |
Samara | Volga | 1.33 | 9.24 | 507.43 | 69.33 | 3172925 |
Saratov | Volga | 1.11 | 8.34 | 465.51 | 69.08 | 2442575 |
Smolensk | Central | 1.08 | 9.55 | 438.74 | 68 | 888421 |
Sverdlovsk | Ural | 1.56 | 10.08 | 590.4 | 68.79 | 4268998 |
Tambov | Central | 1.22 | 8.92 | 411.67 | 69.88 | 982991 |
Tatarstan | Volga | 1.43 | 9.33 | 580.1 | 71.28 | 4004809 |
Tomsk | Siberian | 1.24 | 9.33 | 617.69 | 69.7 | 1062666 |
Tula | Central | 1.15 | 9.8 | 531.12 | 68.97 | 1501214 |
Tuva | Siberian | 2.51 | 8.2 | 593.44 | 66.88 | 336651 |
Tver | Central | 1.3 | 10.23 | 490.58 | 67.87 | 1230171 |
Tyumen | Ural | 1.72 | 9.45 | 1099.71 | 70.14 | 1601940 |
Udmurtia | Volga | 1.43 | 10.84 | 488.14 | 69.99 | 1452914 |
Ulyanovsk | Volga | 1.32 | 9.69 | 443.69 | 69.05 | 1196745 |
Vladimir | Central | 1.16 | 9.82 | 485.58 | 68.11 | 1348134 |
Volgograd | Southern | 1.14 | 8.44 | 453.44 | 69.96 | 2500781 |
Vologda | Northwestern | 1.41 | 10.53 | 577.55 | 69.08 | 1142827 |
Voronezh | Central | 1.23 | 9.52 | 496.07 | 69.49 | 2308792 |
Yamalo-Nenets AO | Ural | 1.92 | 7.32 | 1739.92 | 71.7 | 510490 |
Yaroslavl | Central | 1.31 | 10.47 | 499.99 | 69.07 | 1209811 |
Zabaykalsky Krai | Siberian | 1.69 | 9.26 | 646.57 | 66.82 | 1004125 |