Skip to content

Commit

Permalink
removed important
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Jan 19, 2024
1 parent 81c8914 commit f66c8ab
Show file tree
Hide file tree
Showing 3 changed files with 52 additions and 74 deletions.
8 changes: 3 additions & 5 deletions Mathematics/4th/Arithmetic/Arithmetic.tex
Original file line number Diff line number Diff line change
Expand Up @@ -72,11 +72,9 @@
\begin{proof}
If $p\mid a$ we are done. If not, then $\gcd(p,a)=1$ and therefore $\gcd(pb,ab)=\abs{b}$. Since $p\mid pb$ and $p\mid ab$, and by \mcref{A:gcddiv} we conclude that $p\mid b$.
\end{proof}
\begin{important}
\begin{theorem}[Fundamental theorem of Arithmetic]\label{A:fundamentalthm}
Let $n\in\NN$, the there exists unique prime numbers $p_1,\ldots, p_r$ such that: $$n=p_1p_2\cdots p_r$$
\end{theorem}
\end{important}
\begin{theorem}[Fundamental theorem of Arithmetic]\label{A:fundamentalthm}
Let $n\in\NN$, the there exists unique prime numbers $p_1,\ldots, p_r$ such that: $$n=p_1p_2\cdots p_r$$
\end{theorem}
\begin{proof}
We will proof the existence by induction on $n$. If $n=1$, we are done (empty product). If $n>1$ and $n$ is prime, we are done too. If $n>1$ and $n$ is not prime, we can write $n=ab$ with $a,b<n$ and apply the induction hypothesis.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -158,11 +158,9 @@
\begin{definition}
Let $\Omega\subseteq \RR^n$ be a set. We define the space $\mathcal{C}_0^\infty(\Omega)$ as the set of all compactly supported functions in $\mathcal{C}^\infty(\Omega)$.
\end{definition}
\begin{important}
\begin{theorem}[Fundamental lemma of calculus of variations]\label{PDE:fundamentallemma}
Let $\Omega\subset\RR^n$ be a domain and $f:\Omega\rightarrow\RR$ be a continuous function. If $$\int_U f(\vf{x})\dd{\vf{x}}=0$$ for any subset $U\subseteq\Omega$, then $f=0$ in $\Omega$.
\end{theorem}
\end{important}
\begin{theorem}[Fundamental lemma of calculus of variations]\label{PDE:fundamentallemma}
Let $\Omega\subset\RR^n$ be a domain and $f:\Omega\rightarrow\RR$ be a continuous function. If $$\int_U f(\vf{x})\dd{\vf{x}}=0$$ for any subset $U\subseteq\Omega$, then $f=0$ in $\Omega$.
\end{theorem}
\begin{proof}
If there were a point $\vf{x}_0\in \Omega$ such that (without loss of generality) $f(\vf{x}_0)>0$, the continuity would imply the existence of an open set $U$ containing $\vf{x}_0$ and a $\varepsilon >0$ such that $f(\vf{x})>\varepsilon$ $\forall \vf{x}\in U$. But then we would have: $$0=\int_U f(\vf{x})\dd{\vf{x}}>\varepsilon\abs{U}>0$$
\end{proof}
Expand Down Expand Up @@ -830,11 +828,9 @@
\begin{definition}
Let $U\subset\RR^n$ be open and bounded and fix a time $t=T$. We define the \emph{parabolic cylinder} as $U_T:= U\times (0, T]$. We define the \emph{parabolic boundary} as $\Gamma_T=\overline{U_T}\setminus U_T=\Fr{U_T}\setminus(U\times \{T\})$.
\end{definition}
\begin{important}
\begin{theorem}[Maximum principle]\label{PDE:max}
Let $U\subset\RR^n$ be open and bounded and fix a time $t=T$. Suppose $u\in\mathcal{C}_1^2(U_T)\cap\mathcal{C}(\overline{U_T})$ solve the heat equation in $U_T$. Then: $$\max\{u(\vf{x},t):(\vf{x},t)\in\overline{U_T}\}=\max\{u(\vf{x},t):(\vf{x},t)\in\Gamma_T\}$$
\end{theorem}
\end{important}
\begin{theorem}[Maximum principle]\label{PDE:max}
Let $U\subset\RR^n$ be open and bounded and fix a time $t=T$. Suppose $u\in\mathcal{C}_1^2(U_T)\cap\mathcal{C}(\overline{U_T})$ solve the heat equation in $U_T$. Then: $$\max\{u(\vf{x},t):(\vf{x},t)\in\overline{U_T}\}=\max\{u(\vf{x},t):(\vf{x},t)\in\Gamma_T\}$$
\end{theorem}
\begin{proof}
Let $v\in\mathcal{C}_1^2(U_T)\cap\mathcal{C}(\overline{U_T})$ such that $v_t-\alpha\laplacian v<0$. Then, $\displaystyle\max\{v(\vf{x},t):(\vf{x},t)\in\overline{U_T}\}=\max\{v(\vf{x},t):(\vf{x},t)\in\Gamma_T\}$. Indeed, if the maximum was in $U_T$ or $U\times\{T\}$ we would have $v_t\geq 0$ and $\laplacian v\leq 0$, which contradicts $v_t-\alpha\laplacian v<0$ because $\alpha>0$.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -400,11 +400,9 @@
\begin{sproof}
The first property is clear. Regarding the second one, just note that: $$\mathcal{S}(f\indi{E})\subseteq \mathcal{S}(g\indi{E})\implies \sup_{s\in\mathcal{S}(f\indi{E})}\int s\leq \sup_{s\in\mathcal{S}(g\indi{E})}\int s$$
\end{sproof}
\begin{important}
\begin{theorem}[Monotone convergence theorem]\label{RFA:monotone}
Let $E\subseteq\RR^n$ be a measurable set, $f\geq 0$ be a non-negative measurable function such that $\exists (f_m)\geq 0$ with $f_m$ measurable $\forall m\in\NN$ and $f_m\nearrow f$. Then: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$
\end{theorem}
\end{important}
\begin{theorem}[Monotone convergence theorem]\label{RFA:monotone}
Let $E\subseteq\RR^n$ be a measurable set, $f\geq 0$ be a non-negative measurable function such that $\exists (f_m)\geq 0$ with $f_m$ measurable $\forall m\in\NN$ and $f_m\nearrow f$. Then: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$
\end{theorem}
\begin{proof}
The inequality $\int_Ef_m(x)\dd{x}\leq \int_Ef(x)\dd{x}$ is obvious. We need to prove the other one. To do so it suffices to show that $\forall \varepsilon>0$ and $\forall s\in\mathcal{S}(f\indi{E})$ we have $(1-\varepsilon)\int_E s\leq {\displaystyle\lim_{m\to\infty}}\int_Ef_m(x)\dd{x}$.
Let $E_m:=\{f_m\geq (1-\varepsilon)s\}$. Note that $E_m\nearrow E$ and moreover:
Expand Down Expand Up @@ -479,11 +477,9 @@
\item If $h\in\RR^n$, $f\in \mathcal{L}^1(E)$, then: $$\int_{E-h}f(x+h)\dd{x}=\int_{-E}f(-x)\dd{x}=\int_{E}f(x)\dd{x}$$
\end{enumerate}
\end{proposition}
\begin{important}
\begin{theorem}[Dominated convergence theorem]\label{RFA:dominated}
Let $E\subseteq\RR^n$ be a measurable set, $f$ be a measurable function over $E$ such that $\exists (f_m)$ measurable with $f_m\almoste{\rightarrow} f$ and $\abs{f_m(x)}\almoste\leq g(x)$ on $E$ with $g\in \mathcal{L}^1(E)$ $\forall m\in\NN$. Then, $f, f_m\in \mathcal{L}^1(E)$ $\forall m\in\NN$ and: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$
\end{theorem}
\end{important}
\begin{theorem}[Dominated convergence theorem]\label{RFA:dominated}
Let $E\subseteq\RR^n$ be a measurable set, $f$ be a measurable function over $E$ such that $\exists (f_m)$ measurable with $f_m\almoste{\rightarrow} f$ and $\abs{f_m(x)}\almoste\leq g(x)$ on $E$ with $g\in \mathcal{L}^1(E)$ $\forall m\in\NN$. Then, $f, f_m\in \mathcal{L}^1(E)$ $\forall m\in\NN$ and: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$
\end{theorem}
\begin{proposition}
Let $E\subseteq\RR^n$ be a measurable set, $f,g\in \mathcal{L}^1(E)$ and $\lambda\in\RR$. Then:
\begin{enumerate}
Expand Down Expand Up @@ -615,35 +611,31 @@
\begin{corollary}
Let $f:\RR^{p+q}\rightarrow\RR$ be a measurable function. Then, $f$ is integrable if and only if: $$\int_{\RR^q}\dd{y}\int_{\RR^p}\abs{f(x,y)}\dd{x}<\infty$$
\end{corollary}
\begin{important}
\begin{theorem}[Fubini's theorem]\label{RFA:fubini}
Let $f\in \mathcal{L}^1(\RR^{p+q})$. Then:
\begin{enumerate}
\item $f(\cdot,y)\overset{\text{a.e.}}{\in} \mathcal{L}^1(\RR^p)$ and $f(x,\cdot)\overset{\text{a.e.}}{\in}\mathcal{L}^1(\RR^q)$, $x\in\RR^p$, $y\in\RR^q$.
\item Let $N_p$ and $N_q$ be the respective null sets where the above functions aren't integrable. Then the functions
\begin{align*}
\Phi(y) & =\begin{cases}
\int_{\RR^p}f(x,y)\dd{x} & \text{if } y\in\RR^q\setminus N_q \\
0 & \text{if } y\in N_q
\end{cases} \\ \Psi(x)&=\begin{cases}
\int_{\RR^q}f(x,y)\dd{y} & \text{if } x\in\RR^p\setminus N_p \\
0 & \text{if } x\in N_p
\end{cases}
\end{align*}
are integrable on $\RR^q$ and $\RR^p$, respectively.
\item \hfill $$\int_{\RR^q}\Phi(y)\dd{y}=\int_{\RR^{p+q}}f(x,y)\dd{(x,y)}=\int_{\RR^p}\Psi(x)\dd{x}$$
\end{enumerate}
\end{theorem}
\end{important}
\begin{theorem}[Fubini's theorem]\label{RFA:fubini}
Let $f\in \mathcal{L}^1(\RR^{p+q})$. Then:
\begin{enumerate}
\item $f(\cdot,y)\overset{\text{a.e.}}{\in} \mathcal{L}^1(\RR^p)$ and $f(x,\cdot)\overset{\text{a.e.}}{\in}\mathcal{L}^1(\RR^q)$, $x\in\RR^p$, $y\in\RR^q$.
\item Let $N_p$ and $N_q$ be the respective null sets where the above functions aren't integrable. Then the functions
\begin{align*}
\Phi(y) & =\begin{cases}
\int_{\RR^p}f(x,y)\dd{x} & \text{if } y\in\RR^q\setminus N_q \\
0 & \text{if } y\in N_q
\end{cases} \\ \Psi(x)&=\begin{cases}
\int_{\RR^q}f(x,y)\dd{y} & \text{if } x\in\RR^p\setminus N_p \\
0 & \text{if } x\in N_p
\end{cases}
\end{align*}
are integrable on $\RR^q$ and $\RR^p$, respectively.
\item \hfill $$\int_{\RR^q}\Phi(y)\dd{y}=\int_{\RR^{p+q}}f(x,y)\dd{(x,y)}=\int_{\RR^p}\Psi(x)\dd{x}$$
\end{enumerate}
\end{theorem}
\subsubsection{Change of variables}
\begin{definition}
Let $U,V\subseteq\RR^n$ be open sets. A \emph{change of variables} is a diffeomorphism $\vf\varphi:U\rightarrow V$ of class $\mathcal{C}^1$.
\end{definition}
\begin{important}
\begin{theorem}[Change of variables]
Let $U,V\subseteq\RR^n$ be open sets and $\vf\varphi:U\rightarrow V$ be a change of variables. If $f:\RR^n\rightarrow[0,\infty]$ is measurable or integrable on $V$, then so is $(f\circ\vf\varphi)\abs{J\vf\varphi}$ and: $$\int_{V} f(x)\dd{x}=\int_Uf(\vf\varphi(t))\abs{J\vf\varphi(t)}\dd{t}$$
\end{theorem}
\end{important}
\begin{theorem}[Change of variables]
Let $U,V\subseteq\RR^n$ be open sets and $\vf\varphi:U\rightarrow V$ be a change of variables. If $f:\RR^n\rightarrow[0,\infty]$ is measurable or integrable on $V$, then so is $(f\circ\vf\varphi)\abs{J\vf\varphi}$ and: $$\int_{V} f(x)\dd{x}=\int_Uf(\vf\varphi(t))\abs{J\vf\varphi(t)}\dd{t}$$
\end{theorem}
\subsection{Banach spaces}
\subsubsection{Normed vector spaces}
\begin{definition}
Expand Down Expand Up @@ -953,11 +945,9 @@
\begin{proof}
By \mcref{RFA:lemmaalphabeta}, $\forall y\in K$ $\exists h_y\in\mathcal{C}(A)$ such that $h_y(y)=f(y)$ and $h_y(x)=f(x)$. By continuity there is a neighbourhood $N_y$ of $y$ such that $h_y<f+\varepsilon$. Now note that $K\subset\bigcup_{y\in K}N_y$ and the compactness implies that $K\subset\bigcup_{i=1}^mN_{y_i}$ for certain $y_i\in K$, $i=1,\ldots,m$. Finally, take $g_x:=\inf\{h_{y_i}:i=1,\ldots,m\}\in\overline{A}$.
\end{proof}
\begin{important}
\begin{theorem}[Stone-Weierstra\ss\ theorem]
Let $K\subseteq \KK^n$ be a compact set and $A\subseteq \mathcal{C}(K)$ be a separating self-conjugate subalgebra that vanishes nowhere. Then, $A$ is dense in $\mathcal{C}(K)$.
\end{theorem}
\end{important}
\begin{theorem}[Stone-Weierstra\ss\ theorem]
Let $K\subseteq \KK^n$ be a compact set and $A\subseteq \mathcal{C}(K)$ be a separating self-conjugate subalgebra that vanishes nowhere. Then, $A$ is dense in $\mathcal{C}(K)$.
\end{theorem}
\begin{proof}
We distinguish between $\KK=\RR$ and $\KK=\CC$.
\begin{itemize}[leftmargin=1.3cm]
Expand All @@ -981,11 +971,9 @@
% \begin{lemma}
% Let $(X,d)$ be a metric space and $F\subseteq X$. $F$ is relatively compact on $X$ if and only if any bounded sequence $(x_n)\in F$ has a partial convergent subsequence.
% \end{lemma}
\begin{important}
\begin{theorem}[Arzelà-Ascoli theorem]\label{RFA:arzela}
Let $(X,d)$ be a metric space, $K\subset X$ be a compact set and $F\subset \mathcal{C}(K)$ be a subset. Then, $F$ is relatively compact in $\mathcal{C}(K)$ if and only if $F$ is pointwise equicontinuous and pointwise bounded.
\end{theorem}
\end{important}
\begin{theorem}[Arzelà-Ascoli theorem]\label{RFA:arzela}
Let $(X,d)$ be a metric space, $K\subset X$ be a compact set and $F\subset \mathcal{C}(K)$ be a subset. Then, $F$ is relatively compact in $\mathcal{C}(K)$ if and only if $F$ is pointwise equicontinuous and pointwise bounded.
\end{theorem}
% \begin{proof}

% \end{proof}
Expand Down Expand Up @@ -1502,15 +1490,13 @@
$$\norm{y_n-y_m}^2\leq 2\norm{y_n-x}^2+2\norm{y_m-x}^2 - 4\delta^2\to 0$$
Hence $(y_n)$ is Cauchy and so its limit $y\in C$ satisfies $\delta=d(x,y)$ by the continuity of the norm.
\end{sproof}
\begin{important}
\begin{theorem}[Projection theorem]\label{RFA:projection}
Let $(H,\dotp{\cdot}{\cdot})$ be a Hilbert space and $F\subseteq H$ be a closed subspace. Then:
\begin{enumerate}
\item\label{RFA:projA} $H=F\oplus F^\perp$ and $\forall x\in H$, we can write $x=P_Fx+P_{F^\perp}x$.
\item If $x\in H$ and $y\in F$, then $y=P_Fx\iff x-y\in F^\perp$.
\end{enumerate}
\end{theorem}
\end{important}
\begin{theorem}[Projection theorem]\label{RFA:projection}
Let $(H,\dotp{\cdot}{\cdot})$ be a Hilbert space and $F\subseteq H$ be a closed subspace. Then:
\begin{enumerate}
\item\label{RFA:projA} $H=F\oplus F^\perp$ and $\forall x\in H$, we can write $x=P_Fx+P_{F^\perp}x$.
\item If $x\in H$ and $y\in F$, then $y=P_Fx\iff x-y\in F^\perp$.
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{enumerate}
\item The equality $F\cap F^\perp=\{0\}$ follows from noting that $\dotp{u}{u}=0$ $\forall u\in F\cap F^\perp$. Now let $x\in H$ and $y=P_Fx$. We need to show that $z:=x-y\in F^\perp$. Let $u\in F$. Then, $\exists\lambda\in\KK$ such that $\norm{\lambda}= 1$ and $\lambda\dotp{u}{z}=\abs{\dotp{u}{z}}$. Now consider $f(t)=\norm{z-vt}^2$, where $v=\lambda u\in F$. Note that $f$ has a minimum at the origin because:
Expand Down Expand Up @@ -1695,11 +1681,9 @@
\begin{lemma}
Let $H$ be a Hilbert space and $T\in\mathcal{L}(H)$ be compact and self-adjoint. Consider the sequence $(v_n)$ of orthonormal eigenvectors associated with the eigenvalues $(\alpha_n)$ of $T$. Then: $$H=\langle v_1,v_2,\ldots\rangle\oplus \ker(T)$$ and $\langle v_1,v_2,\ldots\rangle={\ker(T)}^\perp$.
\end{lemma}
\begin{important}
\begin{theorem}[Hilbert-Schmidt spectral representation theorem] \label{RFA:representationtheorem}
Let $H$ be a Hilbert space and $T\in\mathcal{L}(H)$ be compact and self-adjoint. Consider the sequence $(v_n)$ of orthonormal eigenvectors associated with the eigenvalues $(\alpha_n)$ of $T$. Then: $$Tx=\sum_{n=1}^\infty\alpha_n\dotp{x}{v_n}v_n$$ assuming that $\alpha_n=0$ eventually if the sequence $(\alpha_n)$ is finite.
\end{theorem}
\end{important}
\begin{theorem}[Hilbert-Schmidt spectral representation theorem] \label{RFA:representationtheorem}
Let $H$ be a Hilbert space and $T\in\mathcal{L}(H)$ be compact and self-adjoint. Consider the sequence $(v_n)$ of orthonormal eigenvectors associated with the eigenvalues $(\alpha_n)$ of $T$. Then: $$Tx=\sum_{n=1}^\infty\alpha_n\dotp{x}{v_n}v_n$$ assuming that $\alpha_n=0$ eventually if the sequence $(\alpha_n)$ is finite.
\end{theorem}
\begin{theorem}[Fredholm alternative]
Let $H$ be a Hilbert space, $T\in\mathcal{L}(H)$ be compact and self-adjoint and $\alpha\in\KK^*$. Consider the sequence $(v_n)$ of orthonormal eigenvectors associated with the eigenvalues $(\alpha_n)$ of $T$. Then:
\begin{enumerate}
Expand Down

0 comments on commit f66c8ab

Please sign in to comment.