Skip to content

Commit

Permalink
updated little of dynamical systems
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Dec 4, 2023
1 parent d57c915 commit d2536c5
Show file tree
Hide file tree
Showing 2 changed files with 21 additions and 12 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@
\end{multline*}
where $\vf{X}_H$ is the vector field of \mcref{ADS:ham_system}, and we used that the derivative of the determinant map is the trace. But an easy computation shows that $\div \vf{X}_H=0$.
\end{proof}
\subsection{Circle dynamics}
\subsection{Dynamics on the circle}
\subsubsection{Generalities}
\begin{definition}
Let $x,x'\in\RR$. We say that $x\sim x'$ if and only if $x-x'\in\ZZ$. We define the \emph{circle} as $\TT^1:=\quot{\RR}{\sim}$. We define the following distance in $\TT^1$:
Expand All @@ -230,7 +230,7 @@
\end{definition}
\begin{proposition}[Existence of a lift]\hfill
\begin{enumerate}
\item For any continuous map $F:\TT^1\to \TT^1$ there exists a \emph{lift} $f$, i.e.\ a continuous map $f:\RR\to \RR$ such that $F\circ \pi=\pi\circ f$, where $\pi:\RR\to \TT^1$ is the canonical projection.
\item For any continuous map $F:\TT^1\to \TT^1$ there exists a \emph{lift} $f$, i.e.\ a continuous map $f:\RR\to \RR$ such that $F\circ \pi=\pi\circ f$, where $\pi:\RR\to\TT^1$ is the canonical projection.
\item If $g$ is another lift of $F$, then $g-f=k\in\ZZ$.
\end{enumerate}
\end{proposition}
Expand All @@ -255,7 +255,7 @@
\begin{definition}
We define the set:
\begin{multline*}
\mathcal{D}^0(\TT^1):\{f:\RR\to\RR:f\text{ increasing and}\\
\mathcal{D}^0(\TT^1):=\{f:\RR\to\RR:f\text{ increasing and}\\
\text{ homeomorphism}, f(x+1)=f(x)+1\}
\end{multline*}
Note that we have the projection:
Expand All @@ -264,15 +264,16 @@
$$
We can define a distance in $\mathcal{D}^0(\TT^1)$ as:
$$
d(f,g)=\max\{ \sup_{x\in\RR}\abs{f(x)-g(x)},\sup_{x\in\RR}\abs{f^{-1}(x)-g^{-1}(x)}\}
d(f,g)=\max\left\{ \sup_{x\in\RR}\abs{f(x)-g(x)},\sup_{x\in\RR}\abs{f^{-1}(x)-g^{-1}(x)}\right\}
$$
\end{definition}
\begin{lemma}
$\mathcal{D}^0(\TT^1)$ is a complete metric space. Moreover:
\begin{enumerate}
\item $f\to f^{-1}$ is continuous, $f\in \mathcal{D}^0(\TT^1)$.
\item $(f,g)\to f\circ g$ is continuous, $(f,g)\in \mathcal{D}^0(\TT^1)\times \mathcal{D}^0(\TT^1)$.
\end{enumerate}
$\mathcal{D}^0(\TT^1)$ is a complete metric space. Moreover, the functions:
$$
\function{}{\mathcal{D}^0(\TT^1)}{\mathcal{D}^0(\TT^1)}{f}{f^{-1}}\quad
\function{}{\mathcal{D}^0(\TT^1)\times \mathcal{D}^0(\TT^1)}{\mathcal{D}^0(\TT^1)}{(f,g)}{f\circ g}
$$
are continuous.
Thus, $\mathcal{D}^0(\TT^1)$ is a topological group with the composition.
\end{lemma}
\begin{definition}
Expand All @@ -285,16 +286,22 @@
If $0\leq \varepsilon<\frac{1}{2\pi}$, then $f_{\alpha,\varepsilon}\in \mathcal{D}^0(\TT^1)$.
\end{lemma}
\begin{proof}
Note that ${f_{\alpha,\varepsilon}}'>0\iff \varepsilon<\frac{1}{2\pi}$. Thus, $f_{\alpha,\varepsilon}$ is strictly increasing, and therefore it is a homeomorphism.
Note that ${f_{\alpha,\varepsilon}}'>0\iff \varepsilon<\frac{1}{2\pi}$. Thus, $f_{\alpha,\varepsilon}$ is strictly increasing, and therefore it is a homeomorphism. Moreover, $f_{\alpha,\varepsilon}(x+1)=f_{\alpha,\varepsilon}(x)+1$.
\end{proof}
\subsubsection{Rotation number}\label{ADS:rotation_number_section}
\begin{remark}
\begin{lemma}
Recall that $f=\id+\varphi$ with $\varphi$ 1-periodic. And thus:
$$
f^n=\id + \sum_{i=0}^{n-1} \varphi\circ f^i=: \id + \varphi_n
$$
with $\varphi_n$ 1-periodic.
\end{remark}
\end{lemma}
\begin{proof}
Use induction on $i$ to prove that all the terms of the sum $\varphi\circ f^i$ are 1-periodic. The case $i=0$ is clear. Now, for the inductive step:
\begin{multline*}
\varphi\circ f^{i+1}(x+1)=\varphi\left(x+1+\sum_{k=0}^{i}\varphi\circ f^k(x+1)\right)=\\=\varphi\left( x+\sum_{k=0}^{i}\varphi\circ f^k(x)\right)=\varphi\circ f^{i+1}(x)
\end{multline*}
\end{proof}
\begin{lemma}\label{ADS:lema1}
Let $f\in \mathcal{D}^0(\TT^1)$ be such that $f=\id +\varphi$, with $\varphi$ 1-periodic. Let $m:=\min_{x\in\RR}\varphi$ and $M:=\max_{x\in\RR}\varphi$. Then, we have $m\leq M< m+1$.
\end{lemma}
Expand Down
2 changes: 2 additions & 0 deletions preamble_formulas.sty
Original file line number Diff line number Diff line change
Expand Up @@ -303,7 +303,9 @@
\newcommand{\topo}{\tau} % symbol for the topology. Feasible options are: \tau, \mathcal{T}...
\newcommand{\conn}{\mathrel{\#}} % connected sum. \mathrel gives the space of a relation (like +,-,...) while \mathbin gives the space of a binary operator (like =).
\renewcommand{\S}{S} % S of the S ^ n (n-th dimensional sphere)
\newcommand{\Homeo}{\mathrm{Homeo}} % set of homeomorphisms
\newcommand{\Homeoplus}{\mathrm{Homeo}^+} % set of orientation-preserving homeomorphisms
\newcommand{\Diff}{\mathrm{Diff}} % set of diffeomorphisms
\newcommand{\Diffplus}{\mathrm{Diff}_+} % set of orientation-preserving diffeomorphisms

%%% GALOIS THEORY
Expand Down

0 comments on commit d2536c5

Please sign in to comment.