Skip to content

Commit

Permalink
updated numerical methods
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Oct 26, 2023
1 parent 0bd588a commit cdeaa95
Showing 1 changed file with 112 additions and 1 deletion.
Original file line number Diff line number Diff line change
Expand Up @@ -122,5 +122,116 @@
\item $I_Kv=v$ $\forall v\in \mathcal{P}$, i.e.\ $I_K$ is a projection.
\end{enumerate}
\end{lemma}
\begin{definition}
A \emph{subdivision} of a bounded open set $\Omega\subset \RR^n$ is a collection $\mathcal{T}$ of open sets $K_i$ such that:
\begin{enumerate}
\item $K_i\cap K_j=\varnothing$ $\forall i\neq j$.
\item $\overline{\Omega}= \bigcup_{K\in\mathcal{T}}\overline{K}$.
\end{enumerate}
\end{definition}
\begin{definition}
Let $\mathcal{T}$ be a subdivision of $\Omega$ such that for each $K\in\mathcal{T}$ there exists a finite element $(K,\mathcal{P},\mathcal{N})$ with local interpolant $I_K$. Let $m$ be the order of the highest partial derivative appearing in any of the degrees of freedom of $\mathcal{N}$. We define the \emph{global interpolant} $I_\mathcal{T}v$ of $\mathcal{T}$, for $v\in \mathcal{C}^m(\overline{\Omega})$, as:
$$
I_\mathcal{T}v|_K:=I_Kv\quad \forall K\in\mathcal{T}
$$
\end{definition}
\begin{definition}
A \emph{triangulation} of a bounded open set $\Omega\subset \RR^2$ is a subdivision $\mathcal{T}$ of $\Omega$ such that:
\begin{enumerate}
\item Each $K\in\mathcal{T}$ is a triangle.
\item The intersection of two triangles is either empty or a common vertex or a common edge.
\end{enumerate}
\end{definition}
\begin{definition}
Let $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$, $(K,\mathcal{P},\mathcal{N})$ be finite elements and $T:\RR^n\to\RR^n$ be an affine transformation. We say that these finite elements are \emph{affinely equivalent} by $T$ if:
\begin{enumerate}
\item $K=T(\widehat{K})$.
\item $\mathcal{P}=\{\widehat{p}\circ T^{-1}:\widehat{p}\in\widehat{\mathcal{P}}\}$.
\item $\mathcal{N}=\{N_i\}$, where $N_i(p)=\widehat{N}_i(p\circ T)$ $\forall p\in\mathcal{P}$.
\end{enumerate}
\end{definition}
\begin{lemma}
Let $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$, $(K,\mathcal{P},\mathcal{N})$ be two affine equivalent finite elements by the affine transformation $\vf{T}_K$. Then:
$$
I_{\widehat{K}}(v\circ \vf{T}_K)=I_Kv\circ T
$$
\end{lemma}
\subsubsection{Polygonal interpolation in Sobolev spaces}
\begin{lemma}[Bramble-Hilbert lemma]
Let $F:W^{k,p}(\Omega)\to\RR$ be such that:
\begin{enumerate}
\item $\abs{F(v)}\leq c_1\abs{v}_{W^{k,p}(\Omega)}$ $\forall v\in W^{k,p}(\Omega)$, where $$
\abs{v}_{W^{k,p}(\Omega)}:=
\begin{cases}
{\left({\sum_{\abs{\alpha}= k}\norm{\partial^\alpha v}_{L^p(\Omega)}}\right)}^{1/p} & \text{if }p<\infty \\
\max_{\abs{\alpha}= k}\norm{\partial^\alpha v}_{L^\infty(\Omega)} & \text{if }p=\infty
\end{cases}
$$
\item $\abs{F(u+v)}\leq c_2(\abs{F(u)}+\abs{F(v)})$ $\forall u,v\in W^{k,p}(\Omega)$.
\item $\abs{F(q)}=0$ $\forall q\in\mathcal{P}_{k-1}(\Omega)$, where $\mathcal{P}_{\ell}(\Omega)$ is the space of polynomials of degree less than $\ell$.
\end{enumerate}
Then, $\exists C>0$ such that $\forall v\in W^{k,p}(\Omega)$:
$$
\abs{F(v)}\leq C\abs{v}_{W^{k,p}(\Omega)}
$$
\end{lemma}
\begin{theorem}
Let $(K,\mathcal{P},\mathcal{N})$ be a finite element such that $\mathcal{P}_{k-1}\subseteq \mathcal{P}$ for some $k\in\NN$ and all $N\in\mathcal{N}$ be bounded in $W^{k,p}(K)$ for some $p\in[1,\infty]$. Then, $\exists C>0$ such that $\forall v\in W^{k,p}(K)$:
$$
\abs{v-I_Kv}_{W^{\ell,p}(K)}\leq C\abs{v}_{W^{k,p}(K)} \quad\forall \ell\in\{0,\ldots,k\}
$$
\end{theorem}
\begin{remark}
Let $(K,\mathcal{P},\mathcal{N})$ be a finite element and $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ be the reference element. From now on, if they are affine equivalent by $\vf{T}_K:\widehat{K}\to K$, we will assume that $\vf{T}_K\widehat{x}=\vf{A}_K \widehat{x}+\vf{b}_K$, with $\vf{A}_K$ invertible.
\end{remark}
\begin{lemma}
Let $k\in \NN$ and $p\in[1,\infty]$. Then, $\exists C>0$ such that $\forall K\subset\Omega$ and $\forall v\in W^{k,p}(\widehat{K})$:
\begin{align*}
\abs{v}_{W^{k,p}(\widehat{K})} & \leq C\norm{\vf{A}_K}^k\abs{\det \vf{A}_K}^{-1/p}\abs{v}_{W^{k,p}(K)} \\
\abs{v}_{W^{k,p}(K)} & \leq C\norm{{\vf{A}_K}^{-1}}^k\abs{\det \vf{A}_K}^{1/p}\abs{v}_{W^{k,p}(\widehat{K})}
\end{align*}
\end{lemma}
\begin{definition}
Let $(K,\mathcal{P},\mathcal{N})$ be a finite element. We define the \emph{diameter} of $K$ as:
$$
h_K:=\max_{x,y\in K}\norm{x-y}
$$
We define the \emph{insphere diameter} of $K$ as:
$$
\rho_K:=2\max\{\rho>0:B(x,\rho)\subset K\text{ for some }x\in K\}
$$
We define the \emph{condition number} of $K$ as $\sigma_K:=\frac{h_K}{\rho_K}$.
\end{definition}
\begin{lemma}
Let $(K,\mathcal{P},\mathcal{N})$, $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ be affine equivalent finite elements by $\vf{T}_K:\widehat{K}\to K$. Then, $\abs{\det \vf{A}_K}=\frac{\vol(K)}{\vol(\widehat{K})}$, $\norm{\vf{A}_K}\leq \frac{h_K}{\rho_{\widehat{K}}}$ and $\norm{{\vf{A}_K}^{-1}}\leq \frac{h_{\widehat{K}}}{\rho_K}$.
\end{lemma}
\begin{theorem}[Local interpolation error]
Let $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ be a finite element with $\mathcal{P}_{k-1}\subseteq \mathcal{P}$ for some $k\in\NN$ and all $N\in\mathcal{N}$ be bounded in $W^{k,p}(\widehat{K})$ for some $p\in[1,\infty]$. Then, for all finite element $(K,\mathcal{P},\mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ by $\vf{T}_K:\widehat{K}\to K$, $\exists C>0$ (independent of $K$) such that $\forall v\in W^{k,p}(K)$:
$$
\abs{v-I_Kv}_{W^{\ell,p}(K)}\leq C{h_K}^k{\sigma_K}^{\ell}\abs{v}_{W^{k,p}(K)} \quad\forall \ell\in\{0,\ldots,k\}
$$
\end{theorem}
\begin{definition}
A subdivision $\mathcal{T}$ of $\Omega\in \RR^n$ is called \emph{regular} if $\exists C>0$ such that $\forall K\in\mathcal{T}$ we have $\sigma_K\leq C$.
\end{definition}
\begin{theorem}[Global interpolation error]
Let $\mathcal{T}$ be a regular subdivision of $\Omega\in \RR^n$ and $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ be a reference finite element with $\mathcal{P}_{k-1}\subseteq \mathcal{P}$ for some $k\in\NN$ and all $N\in\mathcal{N}$ be bounded in $W^{k,p}(\widehat{K})$ for some $p\in[1,\infty]$. Let $h:= \max_{K\in\mathcal{T}}h_K$. Then, $\exists C>0$ (independent of $h$) such that $\forall v\in W^{k,p}(\Omega)$:
\begin{multline*}
\abs{v-I_\mathcal{T}v}_{W^{\ell,p}(\Omega)}+\sum_{\ell=1}^k\left(h^\ell\sum_{K\in\mathcal{T}} \abs{v-I_Kv}_{W^{\ell,p}(K)}^p\right)^{1/p}\leq \\\leq C h^k\abs{v}_{W^{k,p}(\Omega)}
\end{multline*}
if $p<\infty$ and:
\begin{multline*}
\abs{v-I_\mathcal{T}v}_{W^{\ell,\infty}(\Omega)}+\sum_{\ell=1}^kh^\ell \max_{K\in\mathcal{T}}\abs{v-I_Kv}_{W^{\ell,\infty}(K)}\leq\\\leq C h^k\abs{v}_{W^{k,\infty}(\Omega)}
\end{multline*}
if $p=\infty$.
\end{theorem}
\subsubsection{Error estimates for finite element approximation}
\begin{theorem}
Let $\Omega\subset\RR^n$ be open and bounded, $u\in H^1(\Omega)$ be the solution of the boundary value problem and $\mathcal{T}$ be a regular triangulation of $\Omega$ with reference element $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ such that $\mathcal{P}_{k-1}\subseteq \mathcal{P}$ for some $k\in\NN$. Let $u_h\in V_h$ be the solution of the Galerkin method. Then, if $u\in H^m$, with $\frac{n}{2}< m<k$, then $\exists C>0$ (independent of $h$ and $u$) such that:
$$
\norm{u-u_h}_{H^1(\Omega)}\leq C h^{m-1}\norm{u}_{H^m(\Omega)}
$$
\end{theorem}
\subsection{Spectral methods}
\end{multicols}
\end{document}
\end{document}

0 comments on commit cdeaa95

Please sign in to comment.