Skip to content

Commit

Permalink
updated stochastic calc + elliptic pdes
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Oct 7, 2023
1 parent bbbd049 commit c752fb6
Show file tree
Hide file tree
Showing 7 changed files with 131 additions and 5,823 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -325,21 +325,21 @@
\begin{definition}
We define the \emph{trace operator} as the map:
\begin{align*}
\function{T}{W^{1,p}(\RR_{\geq 0}^d)}{L^p(\RR^{d-1})}{u}{u|_{\RR_0^d}}
\function{\Tr}{W^{1,p}(\RR_{\geq 0}^d)}{L^p(\RR^{d-1})}{u}{u|_{\RR_0^d}}
\end{align*}
\end{definition}
\begin{theorem}
Let $1\leq p<\infty$ and $u\in W^{1,p}(\RR_{\geq 0}^d)$. Then, $Tu=0$ if and only if $u\in W_0^{1,p}(\RR_{\geq 0}^d)$.
Let $1\leq p<\infty$ and $u\in W^{1,p}(\RR_{\geq 0}^d)$. Then, $\Tr u=0$ if and only if $u\in W_0^{1,p}(\RR_{\geq 0}^d)$.
\end{theorem}
\begin{theorem}
Let $1\leq p<\infty$ and $\Omega\subset\RR^d$ be a bounded domain with $\mathcal{C}^1$ boundary. Then, the trace operator
$$
\function{T}{W^{1,p}(\Omega)}{L^p(\Fr{\Omega})}{u}{u|_{\Fr{\Omega}}}
\function{\Tr}{W^{1,p}(\Omega)}{L^p(\Fr{\Omega})}{u}{u|_{\Fr{\Omega}}}
$$
is bounded. Here we are taking the norm of $L^p(\Fr{\Omega})$ as ${\norm{u}_{L^p(\Fr{\Omega})}}^p:=\int_{\Fr{\Omega}}{\abs{u}^p}$. In addition:
\begin{itemize}
\item $\forall u\in W^{1,p}(\Omega)$, $Tu=0$ if and only if $u\in W_0^{1,p}(\Omega)$.
\item For $p=2$, $T$ is surjective.
\item $\forall u\in W^{1,p}(\Omega)$, $\Tr u=0$ if and only if $u\in W_0^{1,p}(\Omega)$.
\item For $p=2$, $\Tr$ is surjective.
\end{itemize}
\end{theorem}
\begin{lemma}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@
\begin{proposition}
$\mathcal{N}_f$ has at least one solution if and only if for any weak solution $v$ of $\mathcal{N}_0$ we have $\langle f,v\rangle=0$.
\end{proposition}
\subsection{Spectrum of compact operators}
\subsubsection{Spectrum of compact operators}
In this section $\KK$ will denote either $\RR$ or $\CC$.
\begin{definition}
Let $H$ be a $\KK$-Hilbert space and $K:H\to H$ be a compact operator. We define the \emph{resolvent set} of $K$ as:
Expand All @@ -120,5 +120,108 @@
$$
If $\sigma(K)\cap\RR^*$ is infinite, then it is of the form $\{\lambda_n\}_{n\in \NN}$ with $\lambda_n\to 0$.
\end{theorem}
\begin{lemma}
Let $H$ be a Hilbert space and $K:H\to H$ be a continuous self-adjoint operator. Then:
$$
\norm{K}=\sup_{\norm{x}=1}\langle x,Kx\rangle
$$
\end{lemma}
\begin{lemma}
Let $H\ne\{ 0\}$ be Hilbert and $K:H\to H$ be a compact and self-adjoint operator. Then:
$$
\sup_{\norm{x}=1}\langle x,Kx\rangle=\lambda
$$
where $\lambda$ is the largest eigenvalue of $K$.
\end{lemma}
\subsubsection{Regularity theorems for weak solutions of divergence-form elliptic PDEs}
\begin{theorem}[Inner regularity]
Assume, in addition to the usual assumptions, that $a_{ij}\in \mathcal{C}^1(\Omega)$. Let $f\in L^2(\Omega)$ and $u$ be a weak solution of $Lu=f$. Then, $u\in H^2_{\text{loc}}(\Omega)$ and for any compact $\omega\subset\subset \Omega$, meaning that $\overline{\omega}\subset\Omega$ compact, we have $u\in H^2(\omega)$ and:
$$
\norm{u}_{H^2(\omega)}\leq C\left(\norm{f}_{L^2(\Omega)}+\norm{u}_{L^2(\Omega)}\right)
$$
\end{theorem}
\begin{corollary}
Assume that $a_{ij}\in\mathcal{C}^m(\Omega)$ for some $m\geq 2$, and $b_j,c\in \mathcal{C}^{m-1}(\Omega)$. Let $f\in H^{m-1}(\Omega)$ and $u\in H^1_{\text{loc}}(\Omega)\cap L^2(\Omega)$ be a weak solution of $Lu=f$. Then, $u\in H^{m+1}_{\text{loc}}(\Omega)$ and for any $\omega\subset\subset \Omega$ we have $u\in H^{m+2}(\omega)$ and:
$$
\norm{u}_{H^{m+2}(\omega)}\leq C\left(\norm{f}_{H^{m-1}(\Omega)}+\norm{u}_{L^2(\Omega)}\right)
$$
\end{corollary}
\begin{theorem}[Regularity up to the boundary]
Assume that $\Fr{\Omega}$ is $\mathcal{C}^2$ and that $a_{ij}\in \mathcal{C}^1(\overline{\Omega})$, $b_j,c\in L^\infty(\Omega)$. Let $f\in L^2(\Omega)$ and $u\in H^1_0(\Omega)$ be a weak solution of $\mathcal{D}_f$. Then, $u\in H^2(\Omega)$ and:
$$
\norm{u}_{H^2(\Omega)}\leq C\left(\norm{f}_{L^2(\Omega)}+\norm{u}_{L^2(\Omega)}\right)
$$
\end{theorem}
\begin{corollary}
Assume that $\Fr{\Omega}$ is $\mathcal{C}^{m+1}$, $m\geq 2$, and that $a_{ij}\in \mathcal{C}^m(\overline{\Omega})$, $b_j,c\in \mathcal{C}^{m-1}(\overline{\Omega})$. Let $f\in H^{m-1}(\Omega)$ and $u\in H^1_0(\Omega)$ be a weak solution of $\mathcal{D}_f$. Then, $u\in H^{m+2}(\Omega)$ and:
$$
\norm{u}_{H^{m+2}(\Omega)}\leq C\left(\norm{f}_{H^{m-1}(\Omega)}+\norm{u}_{L^2(\Omega)}\right)
$$
\end{corollary}
\begin{corollary}
Assume that $\Fr{\Omega}$ is $\mathcal{C}^\infty$ and that $a_{ij},b_j,c,f\in \mathcal{C}^\infty(\overline{\Omega})$. Let $u\in H^1_0(\Omega)$ be a weak solution of $\mathcal{D}_f$. Then, $u\in \mathcal{C}^\infty(\Omega)$ and $\forall m\geq 1$:
$$
\norm{u}_{H^{m+1}(\Omega)}\leq C\left(\norm{f}_{H^{m-1}(\Omega)}+\norm{u}_{L^2(\Omega)}\right)
$$
\end{corollary}
\subsubsection{Weak maximum principle for weak solutions of divergence-form elliptic PDEs}
\begin{lemma}
Let $\Omega\subseteq\RR^d$ open and $u\in H^1(\Omega)$. Then:
$$
u^{+}:=\begin{cases}
u & \text{if }u\geq 0 \\
0 & \text{if }u<0
\end{cases}\qquad
u^{-}:=\begin{cases}
-u & \text{if }u\leq 0 \\
0 & \text{if }u>0
\end{cases}
$$
are also in $H^1(\Omega)$ and:
$$
\grad(u^+)\almoste{=}\begin{cases}
\grad u & \text{if }u>0 \\
0 & \text{if }u\leq 0
\end{cases}\quad
\grad(u^-)\almoste{=}\begin{cases}
-\grad u & \text{if }u<0 \\
0 & \text{if }u\geq 0
\end{cases}
$$
\end{lemma}
\begin{corollary}
Let $\Omega\subseteq\RR^d$ open and $u\in H^1(\Omega)$. Then, $\abs{u}\in H^1(\Omega)$ and $\grad{\abs{u}}=\sign\grad{u}$.
\end{corollary}
\begin{lemma}
Let $(u_n)\in H^1(\Omega)$ be such that $u_n\overset{H^1(\Omega)}{\longrightarrow} u$. Then, $u_n^\pm\overset{H^1(\Omega)}{\longrightarrow} u^\pm$.
\end{lemma}
\begin{corollary}
Let $u\in H^1(\Omega)$. Then, $\Tr_{\partial\Omega}(u^\pm)={(\Tr_{\partial\Omega}u)}^\pm$.
\end{corollary}
\begin{lemma}
Let $\Omega\subseteq\RR^d$ open with $\mathcal{C}^1$ boundary, $u\in H^1(\Omega)$ and $\Tr_{\partial\Omega}u\almoste{\leq}0$. Then, $u^+\in H^1_0(\Omega)$.
\end{lemma}
\begin{theorem}[Weak maximum principle]
Let $\Omega\subseteq\RR^d$ open and bounded with $\mathcal{C}^1$ boundary, $a_{ij}=a_{ji},c\in L^\infty(\Omega)$, $c\almoste{\geq}0$, $L=-\sum_{i,j=1}^d\partial_i(a_{ij}\partial_j)+c$ be elliptic and $f\in L^2(\Omega)$ with $f\almoste{\leq} 0$. Let $u\in H^1(\Omega)$ be such that:
\begin{itemize}
\item $\displaystyle \int_\Omega\left[\sum_{i,j=1}^da_{ij}\partial_iu\partial_jv+cuv\right]=\int_\Omega fv$ $\forall v\in H^1_0(\Omega)$
\item $\Tr_{\partial\Omega}u\almoste{\leq}0$
\end{itemize}
Then, $u\almoste{\leq}0$.
\end{theorem}
\begin{theorem}[Weak maximum principle]
Let $\Omega\subseteq\RR^d$ open and bounded with $\mathcal{C}^1$ boundary, $a_{ij}=a_{ji},b_j,c\in L^\infty(\Omega)$, $L=-\sum_{i,j=1}^d\partial_i(a_{ij}\partial_j)+\sum_{j=1}^db_j\partial_j+c$ be elliptic and $f\in L^2(\Omega)$ with $f\almoste{\leq} 0$. Let $u\in H^1(\Omega)$ be such that:
\begin{itemize}
\item $\displaystyle \int_\Omega\left[\sum_{i,j=1}^da_{ij}\partial_iu\partial_jv+cuv\right]=\int_\Omega fv$ $\forall v\in H^1_0(\Omega)$
\item $\Tr_{\partial\Omega}u\almoste{\leq}0$
\end{itemize}
Then, $u\almoste{\leq}0$.
\end{theorem}
\begin{corollary}
For each $f\in L^2(\Omega)$, the problem $\mathcal{D}_f$ has a unique weak solution $u_f$. Moreover, if $\Fr{\Omega}\in\mathcal{C}^1$, then $u_f\in H^2(\Omega)$ and $f\mapsto u_f$ is a bounded linear operator from $L^2(\Omega)$ to $H^2(\Omega)$. If $\Fr{\Omega}\in\mathcal{C}^{m+1}$, $b_j\in\mathcal{C}^{m-1}$ and $f\in H^{m-1}(\Omega)$, then $u_f\in H^{m+1}(Omega)$ and $f\mapsto u_f$ is a bounded linear operator from $H^{m-1}(\Omega)$ to $H^{m+1}(\Omega)$.
\end{corollary}
\begin{definition}
If the weak solution $u_f$ of the problem $\mathcal{D}_f$ is in $H^1_0(\Omega)\cap W^{2,p}(\Omega)$ for some $p\in [1,\infty)$, then we say that $u_f$ is called a \emph{strong solution} of $\mathcal{D}_f$. If $u_f\in \mathcal{C}^2(\Omega)\cap H^1_0(\Omega)$, then we say that $u_f$ is a \emph{classical solution} of $\mathcal{D}_f$.
\end{definition}
\end{multicols}
\end{document}
21 changes: 21 additions & 0 deletions Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -667,12 +667,33 @@
\dd{f(X_t)}=f'(X_t)\dd{X_t}+\frac{1}{2}f''(X_t)\dd{{\langle X\rangle}_t}
$$
\end{theorem}
\begin{proof}
Let $t\geq 0$ and ${(t_k^n)}_{0\leq k\leq n}\in \mathrm{P}([0,t])$ such that $\Delta_n\to 0$. Then, using the Taylor expansion of $f$ we have:
\begin{align*}
f(X_t)-f(X_0) & =\sum_{k=0}^{n-1}f(X_{t_{k+1}^n})-f(X_{t_k^n})= \\&=\sum_{k=0}^{n-1}f'(X_{t_k^n})(X_{t_{k+1}^n}-X_{t_k^n})+\\
& \qquad\quad+\frac{1}{2}\sum_{k=0}^{n-1}f''(X_{u_k^n}){(X_{t_{k+1}^n}-X_{t_k^n})}^2
\end{align*}
with $u_k^n\in [t_k^n,t_{k+1}^n]$. By a previous remark we have that:
$$
\sum_{k=0}^{n-1}f'(X_{t_k^n})(X_{t_{k+1}^n}-X_{t_k^n})\overset{\Prob}{\longrightarrow} \int_0^t f'(X_u)\dd{X_u}
$$
Now, by \mcref{SC:ito_quadratic_variation} we have that:
$$
\sum_{k=0}^{n-1}Y_{t_k^n}{(X_{t_{k+1}^n}-X_{t_k^n})}^2 \overset{\Prob}{\longrightarrow} \int_0^t Y_u\dd{{\langle X\rangle}_u}
$$
in the elementary case where $Y_u=\indi{(0,s]}(u)$, $s\geq 0$. By linearity, this immediately extends to the case where $Y$ is a random step function. By density, it further extends to the case where $Y$ is any continuous and adapted process. In particular, we may take
$Y_u=f''(X_u)$, and the formula holds by uniform continuity:
$$
\max_{0\leq k\leq n}\abs{f''(X_{t_k^n})-f''(X_{u_k^n})}\almoste{\longrightarrow} 0
$$
\end{proof}
\begin{theorem}
Let $X^1,\ldots,X^d$ be Itô processes and $f\in C^2(\RR^d)$. Then, ${(f(X^1_t,\ldots,X^d_t))}_{t\geq 0}$ is an Itô process and:
$$
\dd{f(\vf{X})} =\sum_{i=1}^d\pdv{f}{x_i}(\vf{X})\dd{X^i_t}+\frac{1}{2}\sum_{i,j=1}^d\frac{\partial^2 f}{\partial x_i\partial x_j}(\vf{X})\dd{{\langle X^i,X^j\rangle}_t}
$$
where $\vf{X}:=(X^1,\ldots,X^d)$.
\end{theorem}
\subsubsection{Exponential martingales}
\end{multicols}
\end{document}
Loading

0 comments on commit c752fb6

Please sign in to comment.