Skip to content

Commit

Permalink
corrected typo stochastic control
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Oct 28, 2023
1 parent 07fab55 commit c11da65
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions Mathematics/5th/Stochastic_control/Stochastic_control.tex
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@
\vf{X}_{t_0}=\vf{x}_0
\end{cases}
\end{equation}
where $\vf{b}:\RR_{\geq 0}\times\RR^d\times A\to\RR^d$, $\vf{\sigma}:\RR_{\geq 0}\times\RR^d\times A\to\RR^{d\times m}$ are continuous, $A$ is a compact metric space and $\alpha_t\in \text{ct}_t:=\{\rho:[0,t]\times\Omega\to A:\rho\text{ is progressively measurable}\}$ is a \emph{control parameter}.
where $\vf{b}:\RR_{\geq 0}\times\RR^d\times A\to\RR^d$, $\vf{\sigma}:\RR_{\geq 0}\times\RR^d\times A\to\RR^{d\times m}$ are continuous, $A$ is a compact metric space and $\alpha_t\in \text{ct}_t:=\{\rho:[t,T]\times\Omega\to A:\rho\text{ is progressively measurable}\}$ is a \emph{control parameter}.
\end{definition}
From here on we will assume that both $\vf{b}$ and $\vf{\sigma}$ are uniformly Lipschitz-continuous in the second variable.
\begin{theorem}
Expand All @@ -128,14 +128,14 @@
\begin{definition}[Finite horizon problem]
Let $T>0$, $g:\RR^d\to\RR$ be continuous and bounded and $\ell:[0,T]\times\RR^d\times A\to\RR$ be continuous and bounded. We define the following problem:
$$
\inf_{\alpha\in \text{ct}_{t_0}}\Exp\left(\int_{t_0}^T \ell(r,\vf{X}_r^{t_0,\vf{x}_0,\alpha},\alpha_r)\dd{r}+g(\vf{X}_T^{t_0,\vf{x}_0,\alpha})\right)
\inf_{\alpha\in \text{ct}_{t_0}}\Exp\left(\int_{t_0}^T \ell(s,\vf{X}_s^{t_0,\vf{x}_0,\alpha},\alpha_s)\dd{s}+g(\vf{X}_T^{t_0,\vf{x}_0,\alpha})\right)
$$
The first term in the expectation is called \emph{running cost} and the second one \emph{terminal cost}.
\end{definition}
\begin{definition}[Infinte horizon problem]
Let $g:\RR^d\to\RR$ be continuous and bounded and $\ell:[0,\infty)\times\RR^d\times A\to\RR$ be continuous and bounded. We define the following problem:
Let $\ell:[0,\infty)\times\RR^d\times A\to\RR$ be continuous and bounded and $r>0$. We define the following problem:
$$
\inf_{\alpha\in \text{ct}_{t_0}}\Exp\left(\int_{t_0}^\infty \exp{-\tau r}\ell(r,\vf{X}_r^{t_0,\vf{x}_0,\alpha},\alpha_r)\dd{r}\right)
\inf_{\alpha\in \text{ct}_{t_0}}\Exp\left(\int_{t_0}^\infty \exp{-r s}\ell(s,\vf{X}_s^{t_0,\vf{x}_0,\alpha},\alpha_s)\dd{s}\right)
$$
\end{definition}
\end{multicols}
Expand Down

0 comments on commit c11da65

Please sign in to comment.