Skip to content

Commit

Permalink
updated stochastic calculus
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Oct 2, 2023
1 parent 41de37e commit b8a177c
Showing 1 changed file with 117 additions and 1 deletion.
118 changes: 117 additions & 1 deletion Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -544,7 +544,7 @@
{\langle M^\phi\rangle}_t=\int_0^t{\phi_u}^2\dd{u}
$$
\end{theorem}
\begin{theorem}[Stochastic dominated convergence theorem]
\begin{theorem}[Stochastic dominated convergence theorem]\label{SC:stochastic_dominated}
Let $t\geq 0$ and $(\phi_u^n)\in \MM^2_{\text{loc}}$ be a sequence of progressive processes such that $\phi_u^n\overset{\Prob}{\underset{n\to\infty}{\longrightarrow}} \phi_u$ for all a.e.\ $u\in[0,t]$. Suppose that $\forall u\in [0,t]$ and $\forall n\in\NN$ we have $\abs{\phi_u^n}\almoste{\leq} \Psi_u$, with $\Psi\in\MM^2_{\text{loc}}$. Then:
$$
\int_0^t \phi_u^n\dd{B_u}\overset{\Prob}{\underset{n\to\infty}{\longrightarrow}} \int_0^t \phi_u\dd{B_u}
Expand All @@ -558,5 +558,121 @@
\end{corollary}
\subsection{Stochastic differentiation}
\subsubsection{Itô processes}
\begin{proposition}
Let $\psi={(\psi_t)}_{t\geq 0}$ be a stochastic process such that $\forall t\geq 0$ we have
$$
\int_0^t \abs{\psi_u}\dd{u}<\infty
$$
In this case we say that $\psi\in \MM^1_{\text{loc}}$. Then, the process $$
t\mapsto \int_0^t \psi_u\dd{B_u}
$$
is an adapted continuous process.
\end{proposition}
\begin{definition}
An \emph{Itô process} is a stochastic process ${(X_t)}_{t\geq 0}$ of the form:
\begin{equation}\label{SC:ito_process}
X_t=X_0+\int_0^t \phi_u\dd{B_u}+\int_0^t \psi_u\dd{u}
\end{equation}
with $\phi\in\MM^2_{\text{loc}}$ and $\psi\in\MM^1_{\text{loc}}$. The two integrals are called \emph{martingale term} and \emph{drift term} respectively. Instead of \mcref{SC:ito_process} we usually write:
$$
\dd{X_t}=\phi_t\dd{B_t}+\psi_t\dd{t}
$$
This expression is called \emph{stochastic differential}.
\end{definition}
\begin{remark}
Itô processes form a vector space. That is, if $X$ and $Y$ are Itô processes and $\lambda,\mu\in\RR$, then $Z=\lambda X+\mu Y$ is an Itô process and:
$$
\dd{Z_t}=\lambda\dd{X_t}+\mu\dd{Y_t}
$$
Moreover they are always continuous adapted processes.
\end{remark}
\begin{proposition}
Let $X={(X_t)}_{t\geq 0}$ be an Itô process such that $\forall t\geq 0$ we have:
$$
\dd{X_t}=\phi_t\dd{B_t}+\psi_t\dd{t}=\tilde{\phi}_t\dd{B_t}+\tilde{\psi}_t\dd{t}
$$
for some $\phi,\tilde{\phi}\in\MM^2_{\text{loc}}$ and $\psi,\tilde{\psi}\in\MM^1_{\text{loc}}$. Then, $\phi$, $\tilde{\phi}$ are indistinguishable and so are $\psi$, $\tilde{\psi}$.
\end{proposition}
\begin{proof}
By assumption, we have that a.e.\ $\forall t\geq 0$:
$$
\int_0^t{( \phi_u-\tilde{\phi}_u)}\dd{B_u}=\int_0^t{(\psi_u-\tilde{\psi}_u)}\dd{u}
$$
But since the right-hand side of the equation is a local martingale and the left-hand side has finite variation, we have that both sides must be 0 a.e.\ in $t$. Moreover, by the uniqueness of the quadratic variation we have that:
$$
\int_0^t{(\phi_u-\tilde{\phi}_u)}^2\dd{u}=0
$$
Letting $t\to \infty$ we get that $\phi$, $\tilde{\phi}$ are indistinguishable. Finally, from the Lebesgue integral, we have that $\psi$, $\tilde{\psi}$ are indistinguishable.
\end{proof}
\begin{definition}
Let $X={(X_t)}_{t\geq 0}$ be an Itô process such that $\dd{X_t}=\phi_t\dd{B_t}+\psi_t\dd{t}$, and $Y={(Y_t)}_{t\geq 0}$ be a continuous adapted process. Then, $Y\phi\in \MM^2_{\text{loc}}$ and $Y\psi\in \MM^1_{\text{loc}}$ and we define:
$$
\int_0^tY_u \dd{X_u}:=\int_0^t Y_u\phi_u\dd{B_u}+\int_0^t Y_u\psi_u\dd{u}
$$
\end{definition}
\begin{remark}
Note that using \mnameref{RFA:dominated;SC:stochastic_dominated} we also have:
$$
\int_0^tY_u \dd{X_u}\overset{\Prob}{=}\lim_{n\to\infty} \sum_{k=0}^{n-1}Y_{t_k^n}(X_{t_{k+1}^n}-X_{t_k^n})
$$
along any subdivision ${(t_k^n)}_{0\leq k\leq n}\in \mathrm{P}([0,t])$ such that $\Delta_n\to 0$.
\end{remark}
\subsubsection{Quadratic variation of Itô processes}
\begin{lemma}\label{SC:ito_quadratic_variation}
Let $X={(X_t)}_{t\geq 0}$, $\tilde{X}=({\tilde{X}_t})_{t\geq 0}$ be two Itô processes with differentials:
$$
\dd{X_t}=\phi_t\dd{B_t}+\psi_t\dd{t}\qquad \dd{\tilde{X}_t}=\tilde{\phi}_t\dd{B_t}+\tilde{\psi}_t\dd{t}
$$
Then, for any ${(t_k^n)}_{0\leq k\leq n}\in \mathrm{P}([0,t])$ such that $\Delta_n\to 0$ we have:
\begin{multline*}
\sum_{k=0}^{n-1}{(X_{t_{k+1}^n}-X_{t_k^n})}{(\tilde{X}_{t_{k+1}^n}-\tilde{X}_{t_k^n})}\overset{\Prob}{\underset{n\to\infty}{\longrightarrow}} \int_0^t{\phi_u}{\tilde{\phi}_u}\dd{u}=:\\=:{\langle X,\tilde{X}\rangle}_t
\end{multline*}
In particular:
$$
{\langle X\rangle}_t:= {\langle X,X\rangle}_t=\int_0^t{\phi_u}^2\dd{u}
$$
and we call it the \emph{quadratic variation} of $X$.
\end{lemma}
\begin{proof}
We saw it for $X=\tilde{X}$, and the general formula follows from \mnameref{RFA:polarization}. Now, if $\psi =0$, $X$ is a continuous local martingale with quadratic variation $t\mapsto \int_0^t{\phi_u}^2\dd{u}$. Now if $\phi=0$, we know it because $t\mapsto \int_0^t \psi_u\dd{u}$ has finite variation, and therefore, null quadratic variation. Finally in the general case we have:
\begin{multline*}
\sum_{k=0}^{n-1}{(X_{t_{k+1}^n}-X_{t_k^n})}^2=\sum_{k=0}^{n-1}{\left(\int_{t_k^n}^{t_{k+1}^n}\phi_u\dd{B_u}\right)}^2+\\+\sum_{k=0}^{n-1}{\left(\int_{t_k^n}^{t_{k+1}^n}\psi_u\dd{B_u}\right)}^2+2\sum_{k=0}^{n-1}\int_{t_k^n}^{t_{k+1}^n}\phi_u\dd{B_u}\int_{t_k^n}^{t_{k+1}^n}\psi_u\dd{u}
\end{multline*}
The first part tends to $\int_0^t{\phi_u}^2\dd{u}$, the second part tends to 0 and for the last part use \mcref{SC:prop_variation_fg}.
\end{proof}
\begin{theorem}[Stochastic integration by parts]
Let $X={(X_t)}_{t\geq 0}$ and $Y={(Y_t)}_{t\geq 0}$ be two Itô processes. Then, ${(X_tY_t)}_{t\geq 0}$ is an Itô process and:
$$
\dd{(X_tY_t)}=X_t\dd{Y_t}+Y_t\dd{X_t}+\dd{{\langle X,Y\rangle}_t}
$$
The last term $\dd{{\langle X,Y\rangle}_t}$ is called \emph{Itô term}.
\end{theorem}
\begin{proof}
Let ${(t_k^n)}_{0\leq k\leq n}\in \mathrm{P}([0,t])$ such that $\Delta_n\to 0$. Then:
\begin{multline*}
X_tY_t-X_0Y_0=\sum_{k=0}^{n-1}(X_{t_{k+1}^n}Y_{t_{k+1}^n}-X_{t_k^n}Y_{t_k^n})=\\=\sum_{k=0}^{n-1}(X_{t_{k+1}^n}-X_{t_k^n})Y_{t_{k+1}^n}+\sum_{k=0}^{n-1}X_{t_k^n}(Y_{t_{k+1}^n}-Y_{t_k^n})+\\+\sum_{k=0}^{n-1}(X_{t_{k+1}^n}-X_{t_k^n})(Y_{t_{k+1}^n}-Y_{t_k^n})
\end{multline*}
Letting $n\to\infty$ and using \mcref{SC:ito_quadratic_variation} and a previous remark we get the result.
\end{proof}
\begin{corollary}
Let $X={(X_t)}_{t\geq 0}$ be an Itô process. Then, ${(X_t^2)}_{t\geq 0}$ is an Itô process and:
$$
\dd{X_t^2}=2X_t\dd{X_t}+\dd{{\langle X\rangle}_t}
$$
\end{corollary}
\subsubsection{Itô's formula}
\begin{theorem}[Itô's formula]
Let $X={(X_t)}_{t\geq 0}$ be an Itô process and $f\in C^2(\RR)$. Then, ${(f(X_t))}_{t\geq 0}$ is an Itô process and:
$$
\dd{f(X_t)}=f'(X_t)\dd{X_t}+\frac{1}{2}f''(X_t)\dd{{\langle X\rangle}_t}
$$
\end{theorem}
\begin{theorem}
Let $X^1,\ldots,X^d$ be Itô processes and $f\in C^2(\RR^d)$. Then, ${(f(X^1_t,\ldots,X^d_t))}_{t\geq 0}$ is an Itô process and:
$$
\dd{f(\vf{X})} =\sum_{i=1}^d\pdv{f}{x_i}(\vf{X})\dd{X^i_t}+\frac{1}{2}\sum_{i,j=1}^d\frac{\partial^2 f}{\partial x_i\partial x_j}(\vf{X})\dd{{\langle X^i,X^j\rangle}_t}
$$
where $\vf{X}:=(X^1,\ldots,X^d)$.
\end{theorem}
\end{multicols}
\end{document}

0 comments on commit b8a177c

Please sign in to comment.