Skip to content

Commit

Permalink
updated nipdes
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Jun 19, 2023
1 parent 57ed148 commit 8d7c6e6
Showing 1 changed file with 87 additions and 31 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -553,20 +553,18 @@
$$
\end{proof}
\subsection{Introduction to finite element methods}
\begin{definition}
The \emph{finite element method} is one of the most popular, general,
powerful and elegant approaches for approximating the solutions of
PDEs. Unlike finite difference methods, it naturally handles complicated domains (useful for engines and aeroplanes) and minimally
regular data (such as discontinuous forcing terms).
The \emph{finite element method} is one of the most popular, general,
powerful and elegant approaches for approximating the solutions of
PDEs. Unlike finite difference methods, it naturally handles complicated domains (useful for engines and aeroplanes) and minimally
regular data (such as discontinuous forcing terms).

There are four basic ingredients in the finite element method:
\begin{enumerate}
\item A variational formulation of the problem in an infinite-dimensional space $V$.
\item A variational formulation of the problem in a finite-dimensional space $V_h\subset V$.
\item The construction of a basis for $V_h$.
\item The assembly and solution of the resulting linear system of equations.
\end{enumerate}
\end{definition}
There are four basic ingredients in the finite element method:
\begin{enumerate}
\item A variational formulation of the problem in an infinite-dimensional space $V$.
\item A variational formulation of the problem in a finite-dimensional space $V_h\subset V$.
\item The construction of a basis for $V_h$.
\item The assembly and solution of the resulting linear system of equations.
\end{enumerate}
\subsubsection{The variational formulation}
\begin{definition}
Let $\Omega\subseteq \RR^n$ be an open bounded connected set such that $\Fr{U}$ is of class $\mathcal{C}^1$, $f\in\mathcal{C}(\Omega)$ and $g\in\mathcal{C}(\Fr{\Omega})$. Consider the following Dirichlet problem of finding $u\in\mathcal{C}^2(\Omega)\cap \mathcal{C}(\overline{\Omega})$ such that:
Expand All @@ -578,24 +576,31 @@
\end{equation}
Let
$$V:=\{v:\Omega\rightarrow\RR:\norm{v}_{L^2(\Omega)}+\norm{\grad{v}}_{L^2(\Omega)}<\infty, v|_{\Fr{\Omega}}=0\}$$
The \emph{variational formulation} of the problem is to find $u\in V$ such that:
The \emph{variational formulation} (or \emph{weak formulation}) of the problem is to find $u\in V$ such that:
\begin{equation}\label{NIPDE:varDirichlet}
\int_\Omega \grad{u}\cdot\grad{v}\dd{x}=\int_\Omega fv\dd{x}\quad\forall v\in V
\int_\Omega \grad{u}\cdot\grad{v}\dd{\vf{x}}=\int_\Omega fv\dd{\vf{x}}\quad\forall v\in V
\end{equation}
\end{definition}
\begin{remark}
The variational formulation can be obtained by multiplying \cref{NIPDE:Dirichlet} by $v$ and the use the \mnameref{PDE:greenidentities}.
The variational formulation can be obtained by multiplying \cref{NIPDE:Dirichlet} by $v$ and using the \mnameref{PDE:greenidentities}.
\end{remark}
\begin{lemma}
If $u\in V$ is a solution to \cref{NIPDE:varDirichlet}, then $u$ is a solution to \cref{NIPDE:Dirichlet}.
\end{lemma}
\begin{theorem}
If $f\in \mathcal{C}(\Omega)$, then the solutions to \cref{NIPDE:varDirichlet} are $\mathcal{C}^2(\Omega)$.
\end{theorem}
\begin{lemma}
If $u\in V$ is a solution to \cref{NIPDE:varDirichlet}, then $u$ is a solution to \cref{NIPDE:Dirichlet}.
\end{lemma}
\begin{proof}
Note that $\grad u\cdot\grad v=\div(v\grad u) - v\laplacian u$. Thus, using the \mnameref{DG:divergenceRn} we have:
$$
\int_\Omega \grad{u}\cdot\grad{v}-fv\dd{\vf{x}}=\int_\Omega v(-\laplacian u-f)\dd{\vf{x}}+\int_{\Fr{\Omega}}v\grad{u}\cdot\vf{n}\dd{\vf{s}}=0
$$
because $v=0$ on $\Fr{\Omega}$. Now using the \mnameref{PDE:fundamentallemma}, we conclude that we must have $-\laplacian u=f$ in $\Omega$.
\end{proof}
\begin{definition}[Galerkin approximation]
Let $V_h\subset V$ be a finite-dimensional subspace of $V$. The \emph{Galerkin approximation} of \cref{NIPDE:varDirichlet} is to find $u_h\in V_h$ such that:
\begin{equation}\label{NIPDE:Galerkin}
\int_\Omega \grad{u_h}\cdot\grad{v_h}\dd{x}=\int_\Omega fv_h\dd{x}\quad\forall v_h\in V_h
\int_\Omega \grad{u_h}\cdot\grad{v_h}\dd{\vf{x}}=\int_\Omega fv_h\dd{\vf{x}}\quad\forall v_h\in V_h
\end{equation}
\end{definition}
\subsubsection{Construction of function spaces}
Expand All @@ -605,20 +610,31 @@
\item $\Int(K_i) \cap \Int(K_j) = \varnothing$ for all $i\neq j$.
\item $\bigcup_{i=1}^N K_i = \overline{\Omega}$.
\end{enumerate}
The cells are usually chosen to be $n$-simplices or $n$-parallelepipeds.
The cells are usually chosen to be $n$-simplexes or $n$-parallelepipeds.
\end{definition}
\begin{definition}
The \emph{finite element method} is a particular choice of Galerkin approximation, where the discrete function space
The \emph{finite element method} (\emph{FEM}) is a particular choice of Galerkin approximation, where the discrete function space
$V_h$ is:
\begin{multline*}
V_h:=\{v\in\mathcal{C}(\Omega):v\text{ is piecewise linear when restricted}\\\text{to a cell}\}
\end{multline*}
Note that the functions in $V_h$ are uniquely determined by its values at the vertices of the cell. The vertices of the cells are called \emph{nodes}.
Note that the functions in $V_h$ are uniquely determined by its values at the vertices of the cell because of the unicity of the interpolating polynomial. The vertices of the cells are called \emph{nodes}.
\end{definition}
\begin{definition}
Given the location $x_i$ of $M$ \emph{nodes} in $\Int\Omega$, we define the \emph{nodal basis} $(\phi_1,\ldots,\phi_M)$ as the functions $\phi_i$ such that:
$$\phi_i(x_j)=\delta_{ij}$$
Given the locations $\vf{x}_i$ of the $M$ \emph{nodes} in $\Int\Omega$, we define the \emph{nodal basis} $(\phi_1,\ldots,\phi_M)$ as the functions $\phi_i$ such that:
$$\phi_i(\vf{x}_j)=\delta_{ij}$$
\end{definition}
\begin{lemma}
The nodal basis is indeed a basis of $V_h$.
\end{lemma}
\begin{proof}
Let $v\in V_h$. Then, $v$ can be written as:
$$
v=\sum_{i=1}^M v(\vf{x}_i)\phi_i
$$
Since it is uniquely determined by its values at the nodes, the equality holds.
So, $\langle \phi_1, \ldots, \phi_M\rangle=V_h$. Furthermore, if we have $\sum_{i=1}^M c_i\phi_i=0$, then evaluating at $\vf{x}_j$ we have $c_j=0$ $\forall j=1,\ldots,M$.
\end{proof}
\subsubsection{Linear algebraic formulation}
\begin{proposition}
Given a mesh of $\Omega$, consider the space $V_h\subset V$ and its associate nodal basis. Suppose:
Expand All @@ -629,20 +645,60 @@
$$\vf{Au}=\vf{b}$$
where $\vf{A}=(a_{ij})$ and $\vf{b}=(b_i)$ are defined as:
\begin{equation*}
a_{ij} =\int_\Omega \grad{\phi_i}\cdot\grad{\phi_j}\dd{x} \qquad b_i =\int_\Omega f\phi_i\dd{x}
a_{ij} =\int_\Omega \grad{\phi_i}\cdot\grad{\phi_j}\dd{\vf{x}} \qquad b_i =\int_\Omega f\phi_i\dd{\vf{x}}
\end{equation*}
The matrix $\vf{A}$ is usually called the \emph{stiffness matrix} and $\vf{b}$ the \emph{load vector}.
\end{proposition}
\begin{proof}
Since, $u_h\in V_h$, and using the linearity of the integral we have:
\begin{align*}
\int_\Omega \grad{u_h}\cdot\grad{v_h}\dd{x} & =\int_\Omega f v_h\dd{x} \\
\sum_{i=1}^M v_i \int_\Omega \grad{u_h}\cdot\grad{\phi_i}\dd{x} & =\sum_{i=1}^M v_i \int_\Omega f\phi_i\dd{x}
\int_\Omega \grad{u_h}\cdot\grad{v_h}\dd{\vf{x}} & =\int_\Omega f v_h\dd{\vf{x}} \\
\sum_{i=1}^M v_i \int_\Omega \grad{u_h}\cdot\grad{\phi_i}\dd{\vf{x}} & =\sum_{i=1}^M v_i \int_\Omega f\phi_i\dd{\vf{x}}
\end{align*}
As this holds for all $v_h\in V_h$, we have that this is equivalent to
$$\int_\Omega \grad{u_h}\cdot\grad{\phi_i}\dd{x} =\int_\Omega f\phi_i\dd{x}$$
which implies:
$$\sum_{j=1}^M u_j \int_\Omega \grad{\phi_j}\cdot\grad{\phi_i}\dd{x} =\int_\Omega f\phi_i\dd{x}$$
$$\int_\Omega \grad{u_h}\cdot\grad{\phi_i}\dd{\vf{x}} =\int_\Omega f\phi_i\dd{\vf{x}}$$
for $i=1,\ldots,M$, which implies:
$$\sum_{j=1}^M u_j \int_\Omega \grad{\phi_j}\cdot\grad{\phi_i}\dd{\vf{x}} =\int_\Omega f\phi_i\dd{\vf{x}}$$
\end{proof}
\begin{remark}
Solving this system of linear equations we obtain the approximation by finite elements of the Dirichlet problem for the Poisson equation (\mcref{NIPDE:Dirichlet}). Note that the approximate solution is a piecewise linear function which may not be differentiable at the vertices of the cells. Even so, the approximate solution converges to the exact solution as the mesh is refined.
\end{remark}
\begin{remark}
On the computation of the coefficients $a_{ij}$ we should proceed as follows:
$$
a_{ij}=\sum_{m=1}^N\int_{K_m} \grad{\phi_i}\cdot\grad{\phi_j}\dd{\vf{x}}
$$
Note, however, that many of these integrals will be zero as if $P_i\notin K_m$, then $\varphi_i=0$ on the nodes of $K_m$, and therefore $\varphi_i=0$ and $\grad{\varphi_i}=0$ on $K_m$. Thus, we only need to compute the integrals for $K_m$ such that $P_i, P_j\in K_m$. For these (a priori) non-zero integrals, we use a reference $n$-simplex to compute them. In the following proposition we expose the case $n=2$.
\end{remark}
\begin{proposition}
Let $S$ be an $n$-simplex with vertices at $Q_0=\vf{0}$, $Q_i=\vf{e}_i$ (thought as a point), $i=1,\ldots,n$, where $\vf{e}_i$ is the $i$-th vector of the canonical basis of $\RR^n$. Consider the FEM method for the \mcref{NIPDE:Dirichlet}. Then:
\begin{align*}
\int_{K_m}\grad\varphi_{K_m,\ell}\cdot \grad\varphi_{K_m,k}\dd{\vf{x}} & =\frac{d_m}{n!}{\grad\psi_\ell}{\left(\transpose{\vf{D\sigma}_m}\vf{D\sigma}_m\right)}^{-1}\transpose{\grad\psi_k}
\end{align*}
where $\sigma_m$ is the affine transformation that carries the reference simplex $S$ onto $K_m$, $d_m=\abs{\det\vf{D\sigma}_m}$, $\phi_{K_m,\ell}$ denote that basis function such that evaluates to 1 at the $\ell$-th vertex of $K_m$ (with an ordering fixed), $\ell =0,\ldots,n$, and:
$$
\psi_k(\vf{x})=\begin{cases}
1-\sum_{i=1}^n x_i & k=0 \\
x_k & k=1,\ldots,n
\end{cases}
$$
\end{proposition}
\begin{proof}
Note $\psi_k(Q_k)=\delta_{ij}$ and so by the unicity of the interpolation we have $\varphi_{K_m,\ell}\circ \sigma_m=\psi_\ell$, $\ell=0,\ldots,n$. Thus, by the chain rule, $\grad\psi_\ell=\transpose{\vf{D\sigma}_m}\grad\varphi_{K_m,\ell}$, and so:
\begin{align*}
\int_{K_m} & \grad\varphi_{K_m,\ell}\cdot \grad\varphi_{K_m,k}\dd{\vf{y}} =\int_S\grad\varphi_{K_m,\ell}\cdot \transpose{\grad\varphi_{K_m,k}}d_m\dd{\vf{x}} \\
& =\int_S\grad\psi_\ell{\left(\vf{D\sigma}_m\right)}^{-1}\transpose{{\left(\vf{D\sigma}_m\right)}^{-1}}\transpose{\grad\psi_k}d\dd{\vf{x}} \\
& =\frac{d_m}{n!}\grad\psi_\ell{\left(\transpose{\vf{D\sigma}_m}\vf{D\sigma}_m\right)}^{-1}\transpose{\grad\psi_k}
\end{align*}
where we used that the volume of the $n$-simplex $S$ is $1/n!$ and all inside the integral is constant.
\end{proof}
\begin{remark}
With the same idea, the integrals $b_i$ can be computed as:
$$
\int_{K_m}f\varphi_{K_m,\ell}=d_m\int_Sf\circ\sigma_m\psi_\ell
$$
and we use a quadrature formula to approximate over a triangle.
\end{remark}
% Let $\Omega\subset\RR^2n$ be a bounded domain with a polygonal boundary. Thus, $\Omega$ can be exactly covered by a finite number of triangles. It will be assumed that any pair of triangles in a triangulation of $\Omega$ intersect along a complete edge, at a vertex, or not at all, as shown in Fig. 2.3. We will denote by $h_K$ the diameter (longest side) of the triangle $K$, and we define $h = \max_K h_K$. We define the associate basis functions
% \end{definition}
\end{multicols}
Expand Down

0 comments on commit 8d7c6e6

Please sign in to comment.