Skip to content

Commit

Permalink
updated week
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Sep 24, 2023
1 parent d73c600 commit 5cad9d4
Show file tree
Hide file tree
Showing 10 changed files with 103 additions and 25 deletions.
6 changes: 3 additions & 3 deletions .github/workflows/buildpdf.yml
Original file line number Diff line number Diff line change
Expand Up @@ -185,8 +185,8 @@ jobs:
- name: Compile - INEPDE
uses: xu-cheng/latex-action@v2
with:
root_file: Introduction_to_non_linear_elliptic_PDEs.tex
working_directory: Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/
root_file: Introduction_to_nonlinear_elliptic_PDEs.tex
working_directory: Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/
- name: Compile - LTLD
uses: xu-cheng/latex-action@v2
with:
Expand Down Expand Up @@ -279,7 +279,7 @@ jobs:
Mathematics/5th/Advanced_probability/Advanced_probability.pdf
Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.pdf
Mathematics/5th/Introduction_to_evolution_PDEs/Introduction_to_evolution_PDEs.pdf
Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.pdf
Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.pdf
Mathematics/5th/Limit_theorems_and_large_deviations/Limit_theorems_and_large_deviations.pdf
Mathematics/5th/Stochastic_calculus/Stochastic_calculus.pdf
main_physics.pdf
Expand Down
6 changes: 3 additions & 3 deletions Mathematics/3rd/Probability/Probability.tex
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@
\item There exists $A\in\mathcal{E}$ such that $\mu(A)<\infty$.
\item If $\{A_n\in\mathcal{E}:n\in\NN\}$ is a collection of pairwise disjoint sets, then: $$\mu\left(\bigcup_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty \mu(A_n)$$
\end{enumerate}
The triplet $(E,\mathcal{E},\mu)$ is called a \emph{measurable space}.
The triplet $(E,\mathcal{E},\mu)$ is called a \emph{measure space}.
\end{definition}
\begin{definition}
The \emph{$\sigma$-algebra of all Lebesgue measurable sets in $\RR^n$}, $\mathcal{L}_n\subset\mathcal{P}(\RR^n)$, is defined as:
Expand All @@ -230,10 +230,10 @@
We can extend the concept of volume on rectangles in $\RR^n$ to all the elements in $\mathcal{L}_n$. This extension is called \emph{Lebesgue measure} (or simply \emph{volume}) in $\RR^n$.
\end{theorem}
\begin{definition}
Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\rightarrow\RR$ be a function. We say that $f$ is \emph{measurable} if $\forall B\in\mathcal{B}(\RR)$ we have $f^{-1}(B)\in\mathcal{E}$. The \emph{Lebesgue integral} of $f$ over $E$ with respect to $\mu$ is denoted by: $$\int_Ef\dd\mu$$
Let $(E,\mathcal{E},\mu)$ be a measure space and $f:E\rightarrow\RR$ be a function. We say that $f$ is \emph{measurable} if $\forall B\in\mathcal{B}(\RR)$ we have $f^{-1}(B)\in\mathcal{E}$. The \emph{Lebesgue integral} of $f$ over $E$ with respect to $\mu$ is denoted by: $$\int_Ef\dd\mu$$
\end{definition}
\begin{proposition}
Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\rightarrow\RR$ be a measurable function such that $f(x)\geq 0$ $\forall x\in E$. Then, we can always define the integral $$\int_Ef\dd\mu$$ taking into account that may be $+\infty$.
Let $(E,\mathcal{E},\mu)$ be a measure space and $f:E\rightarrow\RR$ be a measurable function such that $f(x)\geq 0$ $\forall x\in E$. Then, we can always define the integral $$\int_Ef\dd\mu$$ taking into account that may be $+\infty$.
\end{proposition}
\begin{definition}
Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\rightarrow\RR$ be a measurable function. We say that $f$ is \emph{Lebesgue integrable} with respect to $\mu$ if: $$\int_E|f|\dd\mu<\infty$$
Expand Down
6 changes: 3 additions & 3 deletions Mathematics/4th/Dynamical_systems/Dynamical_systems.tex
Original file line number Diff line number Diff line change
Expand Up @@ -201,15 +201,15 @@
The \emph{codimension} of a bifurcation is the number of parameters which must be varied for the bifurcation to occur.
\end{definition}
\begin{definition}[Saddle-node bifurcation]
The normal form of the codimension-one \emph{saddle-node bifurcation} is: $$x'=x^2+\mu$$
The normal form of the codimension-one \emph{saddle-node bifurcation} is: $$x'=\mu+x^2$$
\mcref{DS:sn} shows the qualitative behavior of that system\footnote{In these images, the red lies means that the point $(\mu,x)$ is repelling. The blue lines means that the point $(\mu,x)$ is attracting.}.
\end{definition}
\begin{definition}[Transcritical bifurcation]
The normal form of the codimension-one \emph{transcritical bifurcation} is: $$x'=x^2+\mu x$$
The normal form of the codimension-one \emph{transcritical bifurcation} is: $$x'=\mu x+x^2$$
\mcref{DS:trans} shows a qualitative behavior of the stability of the equilibria.
\end{definition}
\begin{definition}[Pitchfork bifurcation]
The normal form of the codimension-one \emph{pitchfork bifurcation} is: $$x'=x^3+\mu x$$
The normal form of the codimension-one \emph{pitchfork bifurcation} is: $$x'=\mu x+x^3$$
\mcref{DS:fork} shows a qualitative behavior of the stability of the equilibria.
\end{definition}
\begin{figure}[H]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
\mu\left(\bigcup_{n\in\NN}{A_n}\right)=\sum_{n\in\NN}{\mu(A_n)}
$$
\end{enumerate}
The triple $(E,\mathcal{E},\mu)$ is called a \emph{measurable space}.
The triple $(E,\mathcal{E},\mu)$ is called a \emph{measure space}.
\end{definition}
\begin{definition}
Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\to [0,\infty]$ be a measurable function. We define the \emph{integral of $f$ with respect to $\mu$} as:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,17 @@
\begin{theorem}
Let $1\leq p<\infty$ and $u\in W^{1,p}(\RR_{\geq 0}^d)$. Then, $Tu=0$ if and only if $u\in W_0^{1,p}(\RR_{\geq 0}^d)$.
\end{theorem}
\begin{theorem}
Let $1\leq p<\infty$ and $\Omega\subset\RR^d$ be a bounded domain with $\mathcal{C}^1$ boundary. Then, the trace operator
$$
\function{T}{W^{1,p}(\Omega)}{L^p(\Fr{\Omega})}{u}{u|_{\Fr{\Omega}}}
$$
is bounded. Here we are taking the norm of $L^p(\Fr{\Omega})$ as ${\norm{u}_{L^p(\Fr{\Omega})}}^p:=\int_{\Fr{\Omega}}{\abs{u}^p}$. In addition:
\begin{itemize}
\item $\forall u\in W^{1,p}(\Omega)$, $Tu=0$ if and only if $u\in W_0^{1,p}(\Omega)$.
\item For $p=2$, $T$ is surjective.
\end{itemize}
\end{theorem}
\begin{lemma}
Let $\Omega\subseteq \RR^d$ be an open set and $u\in W^{1,p}(\Omega)$ with $1\leq p\leq \infty$. Then, $\norm{\grad \abs{u}}\almoste{\leq}\norm{\grad u}$.
\end{lemma}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
\documentclass[../../../main_math.tex]{subfiles}

\begin{document}
\changecolor{INLP}
\begin{multicols}{2}[\section{Instabilities and nonlinear phenomena}]

\end{multicols}
\end{document}
Original file line number Diff line number Diff line change
Expand Up @@ -2,40 +2,48 @@

\begin{document}
\changecolor{INLEPDE}
\begin{multicols}{2}[\section{Introduction to non linear elliptic PDEs}]
\begin{multicols}{2}[\section{Introduction to nonlinear elliptic PDEs}]
\subsection{Introduction}
\begin{definition}
Let $a_{ij}$, $b_j$, $c$, $f$ be known functions on $\Omega\subseteq \RR^d$. Usually we will denote $\vf{A}=(a_{ij})$ and $\vf{b}=(b_j)$ A \emph{linear second-order PDE} is an equation of the form:
Let $a_{ij}$, $b_j$, $c$, $f$ be known scalar functions defined on $\Omega\subseteq \RR^d$. Usually we will denote $\vf{A}=(a_{ij})$ and $\vf{b}=(b_j)$. A \emph{linear second-order PDE} is an equation of the form:
\begin{equation*}
-\sum_{i,j=1}^da_{ij}(x){\partial_{ij}}^2u(x)+\sum_{j=1}^db_j(x)\partial_ju(x)+c(x)u(x)=f(x)
-\sum_{i,j=1}^da_{ij}(\vf{x})\partial_{ij}^2u(\vf{x})+\sum_{j=1}^db_j(\vf{x})\partial_ju(\vf{x})+c(\vf{x})u(\vf{x})=f(\vf{x})
\end{equation*}
where $u:\Omega\to \RR$ is the unknown function. This form is called \emph{non-divergence form}. If we write the equation in the form:
\begin{multline*}
-\sum_{i=1}^d\pdv{}{x_i}\left(\sum_{j=1}^da_{ij}(x)\partial_ju(x)\right)+\sum_{j=1}^db_j(x)\partial_ju(x)+\\+c(x)u(x)=f(x)
-\sum_{i=1}^d\pdv{}{x_i}\left(\sum_{j=1}^da_{ij}(\vf{x})\partial_ju(\vf{x})\right)+\sum_{j=1}^db_j(\vf{x})\partial_ju(\vf{x})+\\+c(\vf{x})u(\vf{x})=f(\vf{x})
\end{multline*}
then we say that the equation is in \emph{divergence form}. Together with the PDE we usually impose boundary conditions on $\partial\Omega$. The \emph{Dirichlet boundary condition} is:
$$
u|_{\partial\Omega}=g
$$
and it is called \emph{homogeneous} if $g=0$. The \emph{Neumann boundary condition} is:
$$
\langle \vf{n},\vf{A} \nabla u\rangle|_{\partial\Omega}=g
\langle \vf{n},\vf{A} \grad u\rangle|_{\partial\Omega}=g
$$
where we have assumed that the boundary of $\Omega$ is smooth enough to define the normal vector $\vf{n}$. The condition is called \emph{homogeneous} if $g=0$. Note that if $\vf{A}=\vf{I}_d$, then the Neumann boundary condition is just $\partial_{\vf{n}} u=g$.
\end{definition}
\begin{definition}
Let $a_{ij},b_j,c$ be known functions on $\Omega\subseteq \RR^d$. We say that the operator $$L=-\sum_{i,j=1}^da_{ij}{\partial_{ij}}^2 + \sum_{j=1}^d b_j\partial_j+c$$ is \emph{uniformly elliptic} if there exists $\theta>0$ such that for all $x\in \Omega$ and all $p\in \RR^d$ we have:
Let $a_{ij},b_j,c$ be known functions on $\Omega\subseteq \RR^d$. We say that the operator $$L=-\sum_{i,j=1}^da_{ij}\partial_{ij}^2 + \sum_{j=1}^d b_j\partial_j+c$$ is \emph{uniformly elliptic} if there exists $\theta>0$ such that for all $x\in \Omega$ and all $p\in \RR^d$ we have:
\begin{equation}
Q_x(p)=\sum_{i,j=1}^da_{ij}(x)p_ip_j\geq \theta \sum_{i=1}^{d} {p_i}^2
Q_x(\vf{p})=\sum_{i,j=1}^da_{ij}(\vf{x})p_ip_j\geq \theta \sum_{i=1}^{d} {p_i}^2
\end{equation}
\end{definition}
\begin{remark}
Geometrically speaking, this implies that the sets
$$
\xi_{x,h}=\{ p\in \RR^d: Q_x(p)=h\}
\xi_{x,h}=\{ \vf{p}\in \RR^d: Q_x(\vf{p})=h\}
$$
are ellipsoids.
\end{remark}
\begin{proposition}
Let $H$ be Hilbert and $K:H\to H$ be a continuous linear operator. Then, the following are equivalent:
\begin{enumerate}
\item $K$ is compact.
\item For any bounded sequence $(u_n)\in H$, the sequence $(Ku_n)$ has a convergent subsequence.
\item For any sequence $(u_n)\in H$ such that $u_n\rightharpoonup u$, we have $Ku_n\to Ku$.
\end{enumerate}
\end{proposition}
\subsection{Hilbert space methods for divergence form linear PDEs}
In this section, we will assume that $\Omega\subset\RR^d$ is an open, bounded subset, $a_{ij}=a_{ji}$ and $a_{ij},b_j,c\in L^\infty(\Omega)$.
\subsubsection{Fredholm alternative}
Expand Down
61 changes: 56 additions & 5 deletions Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,22 @@
\end{multline*}
\end{proposition}
\subsubsection{Brownian motion}
\begin{definition}
A \emph{Brownian motion} is a stochastic process ${(B_t)}_{t\geq 0}$ such that:
\begin{enumerate}
\item $B$ is Gaussian with $\Exp(B_t)=0$ and $\cov(B_s,B_t)=s\wedge t$.
\item $B$ has continuous paths.
\end{enumerate}
\end{definition}
\begin{proposition}
Let $B$ be a Brownian motion. Then:
\begin{enumerate}
\item $B_0=0$ a.s.
\item $B$ has independent increments.
\item $B$ has stationary increments.
\end{enumerate}
Conversely, any stochastic process with these properties has the law of a Brownian motion.
\end{proposition}
\begin{theorem}[Strong law of large numbers for Brownian motion]
Let ${(B_t)}_{t\geq 0}$ be a Brownian motion. Then:
$$
Expand Down Expand Up @@ -93,7 +109,7 @@
Now, $\left\{d(X_s,A)\leq\frac{1}{k}\right\}\in \mathcal{F}_s\subseteq \mathcal{F}_t$ because $X$ is adapted and $z\mapsto d(z,A)$ is measurable.
Thus, $\{T_A \leq t\}\in \mathcal{F}_t$ because it is a countable union and intersection of events in $\mathcal{F}_t$.
\end{proof}
\begin{theorem}[Doob's optional sampling theorem]
\begin{theorem}[Doob's optional sampling theorem]\label{SC:doob_sampling}
Let ${(M_t)}_{t\geq 0}$ be a continuous martingale and $T$ be a stopping time. Then, the \emph{stopped process} $M^T:={(M_{t\wedge T})}_{t\geq 0}$ is a continuous martingale. In particular, $\forall t\geq 0$, $\Exp(M_{t\wedge T})=\Exp(M_0)$. If $M^T$ is uniformly integrable and $T\overset{\text{a.s.}}{\leq}\infty$, then taking $t\to\infty$ we have $\Exp(M_T)=\Exp(M_0)$.
\end{theorem}
\begin{lemma}[Orthogonality of martingales]\label{SC:orthogonality_martingales}
Expand Down Expand Up @@ -205,7 +221,7 @@
\end{proof}
\subsubsection{Local martingales}
\begin{definition}
A stochastic process ${(M_t)}_{t\geq 0}$ is a \emph{local martingale} if there exists a sequence of stopping times ${(T_n)}_{n\in\NN}$ (called \emph{localizing sequence}) such that:
A stochastic process ${(M_t)}_{t\geq 0}$ is a \emph{continuous local martingale} if there exists a sequence of stopping times ${(T_n)}_{n\in\NN}$ (called \emph{localizing sequence}) such that:
\begin{enumerate}
\item $T_n\nearrow \infty$ a.s.
\item $M^{T_n}:={(M_{t\wedge T_n})}_{t\geq 0}$ is a martingale for all $n\in\NN$.
Expand Down Expand Up @@ -235,14 +251,49 @@
$$
And using the \mnameref{P:dominated} with $M_{t\wedge T_n}\leq \sup_{0\leq s\leq t}\abs{M_s}$ we conclude the result.
\end{proof}

\begin{remark}
Note that if $M$ is a continuous local martingale with $M_0=0$, then we can always take $T_n=\inf\{t\geq 0:\abs{M_t}\geq n\}$ as a localizing sequence.
\end{remark}
\begin{theorem}[Doob's optional sampling theorem for local martingales]
Let $M={(M_t)}_{t\geq 0}$ be a continuous local martingale and $T$ be a stopping time. Then, the stopped process $M^T:={(M_{t\wedge T})}_{t\geq 0}$ is a continuous local martingale.
\end{theorem}
\begin{proof}
Let ${(T_n)}_{n\in\NN}$ be a localizing sequence for $M$. Since $M^{T_n}$ is a continuous martingale, by \mnameref{SC:doob_sampling} we have that $M^{T_n\wedge T}$ is a continuous martingale. Thus, $M^T$ is a local martingale with localizing sequence ${(T_n)}_{n\in\NN}$.
\end{proof}
\begin{proposition}
Continuous local martingales form a vector space.
\end{proposition}
\begin{proof}
Let $M$, $\tilde{M}$ be continuous local martingales with localizing sequences ${(T_n)}_{n\in\NN}$ and ${(\tilde{T}_n)}_{n\in\NN}$ respectively and $\lambda,\tilde{\lambda}\in\RR$. Then, ${(T_n\wedge \tilde{T}_n)}_{n\in\NN}$ is a localizing sequence for both $M$ and $\tilde{M}$ and so $\lambda M^{T_n\wedge \tilde{T}_n}+\tilde{\lambda}\tilde{M}^{T_n\wedge \tilde{T}_n}$ is a martingale.
\end{proof}
\begin{proposition}
If $M$ is a continuous local martingale which has finite variation a.s., then:
$$
\Prob(\forall t\geq 0,\ M_t=M_0)=1
$$
\end{proposition}
\begin{proof}
Let ${(T_n)}_{n\in\NN}$ be a localizing sequence for $M$. Then, $M^{T_n}$ is a martingale and $V(M^{T_n},0,t)=V(M,0,t\wedge T_n)<\infty$. Thus, by \mcref{SC:corollary_finite_variation} we have that $M^{T_n}_t=M^{T_n}_0$ $\forall t\geq 0$ and $n\in\NN$. Taking $n\to\infty$ we get the result.
\end{proof}
\begin{proposition}
Let $M$ be a continuous local martingale. Then, the limit
$$
{\langle M\rangle}_t:=\lim_{n\to\infty}\sum_{k=1}^{n}\abs{M_{t_k^n}-M_{t_{k-1}^n}}^2
$$
exists in probability for any $t\geq 0$ and does not depend on the partition ${(t_k^n)}_{0\leq k\leq n}\in \mathrm{P}([0,t])$ chosen as long as $\Delta_n\to 0$. Moreover, $\langle M\rangle=({\langle M\rangle}_t)_{t\geq 0}$ is the unique process (up to modification) such that:
\begin{enumerate}
\item ${\langle M\rangle}_0=0$
\item $t\mapsto {\langle M\rangle}_t$ is a.s.\ continuous.
\item $\langle M\rangle$ is a.s.\ non-decreasing.
\item ${({M_t}^2-{\langle M\rangle}_t)}_{t\geq 0}$ is a continuous local martingale.
\end{enumerate}
\end{proposition}
\begin{theorem}[Levy's characterization of Brownian motion]
Let $M={(M_t)}_{t\geq 0}$ be a stochastic process. Then, the following are equivalent:
Let $M={(M_t)}_{t\geq 0}$ be a stochastic process. Then, the following are equivalent:
\begin{enumerate}
\item $M$ is a continuous local square-integrable martingale with $M_0=0$ and ${\langle M\rangle}_t=t$.
\item $M$ is a ${(\mathcal{F}_t)}_{t\geq 0}$-Brownian motion.
\end{enumerate}
\end{theorem}

\end{multicols}
\end{document}
2 changes: 1 addition & 1 deletion index.html
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ <h2 class="special-color">Mathematics</h2>
<li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Advanced_probability.pdf';" target="_top">Advanced probability</button></li>
<li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Advanced_topics_in_functional_analysis_and_PDEs.pdf';" target="_top">Advanced topics in functional analysis and PDEs</button></li>
<li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Introduction_to_evolution_PDEs.pdf';" target="_top">Introduction to evolution PDEs</button></li>
<li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Introduction_to_non_linear_PDEs.pdf';" target="_top">Introduction to non linear PDEs</button></li>
<li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Introduction_to_nonlinear_PDEs.pdf';" target="_top">Introduction to non linear PDEs</button></li>
<!-- <li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Limit_theorems_and_large_deviations.pdf';" target="_top">Limit theorems and large deviations</button></li> -->
<li><button class="button" onclick="window.location.href='https://github.com/victorballester7/Complete-summaries/releases/latest/download/Stochastic_calculus.pdf';" target="_top">Stochastic calculus</button></li>
</ul>
Expand Down
2 changes: 1 addition & 1 deletion main_math.tex
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ \chapter{Fifth year}
\subfile{Mathematics/5th/Introduction_to_evolution_PDEs/Introduction_to_evolution_PDEs.tex}
\cleardoublepage

\subfile{Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.tex}
\subfile{Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex}
\cleardoublepage

% \subfile{Mathematics/5th/Limit_theorems_and_large_deviations/Limit_theorems_and_large_deviations.tex}
Expand Down

0 comments on commit 5cad9d4

Please sign in to comment.