Skip to content

Commit

Permalink
updated probability and analysis
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Sep 11, 2023
1 parent 958c6b9 commit 4aaded4
Show file tree
Hide file tree
Showing 9 changed files with 5,705 additions and 5,509 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -1172,7 +1172,10 @@
\end{enumerate}
\end{definition}
\begin{definition}
Let $E$ be a normed vector space. The Banach space $E^*:=\mathcal{L}(E,\KK)$ is called \emph{dual space} of $E$.
Let $E$ be a normed vector space. The Banach space $E^*:=\mathcal{L}(E,\KK)$ is called \emph{dual space} of $E$. The \emph{bidual space} of $E$ is $E^{**}:=(E^*)^*$.
\end{definition}
\begin{definition}
Let $E$ be a normed vector space. We say that $E$ is \emph{reflexive} if $E=E^{**}$.
\end{definition}
\subsubsection{Compact operators}
\begin{definition}
Expand Down Expand Up @@ -1265,7 +1268,7 @@
\end{enumerate}
\end{definition}
\begin{theorem}[Hahn-Banach theorem]
Let $E$ be a real vector space, $F\subseteq E$ be a subspace, $p:E\rightarrow\RR$ be a convex functional and $u\in F^*$. If $u(z)\leq p(z)$ $\forall z\in F$, then $\exists v\in E^*$ such that $v(z)=u(z)$ $\forall z\in F$ and $v(x)\leq p(x)$ $\forall x\in E$ ($v$ is called a \emph{prolongation} of $u$).
Let $E$ be a real vector space, $F\subseteq E$ be a subspace, $p:E\rightarrow\RR$ be a convex functional and $u\in F^*$. If $u(z)\leq p(z)$ $\forall z\in F$, then $\exists v\in E^*$ such that $v(z)=u(z)$ $\forall z\in F$ and $v(x)\leq p(x)$ $\forall x\in E$ ($v$ is called an \emph{extension} of $u$).
\end{theorem}
\begin{definition}[Seminorm]
Let $E$ be a vector space over $\KK$. A \emph{seminorm} $p:E\rightarrow[0,\infty)$ is a functional that satisfies:
Expand All @@ -1278,12 +1281,12 @@
Let $E$ be a vector space over $\KK$. A norm defined on $E$ is a seminorm.
\end{lemma}
\begin{theorem}[Hahn-Banach theorem]
Let $E$ be a vector space over $\KK=\RR,\CC$, $F\subseteq E$ be a subspace, $p:E\rightarrow\RR$ be a seminorm and $u\in F^*$. If $\abs{u(z)}\leq p(z)$ $\forall z\in F$, then $\exists v\in E^*$ such that $v(z)=u(z)$ $\forall z\in F$ and $\abs{v(x)}\leq p(x)$ $\forall x\in E$. That is, $v$ prolongates $u$.
Let $E$ be a vector space over $\KK=\RR,\CC$, $F\subseteq E$ be a subspace, $p:E\rightarrow\RR$ be a seminorm and $u\in F^*$. If $\abs{u(z)}\leq p(z)$ $\forall z\in F$, then $\exists v\in E^*$ such that $v(z)=u(z)$ $\forall z\in F$ and $\abs{v(x)}\leq p(x)$ $\forall x\in E$. That is, $v$ extends $u$.
\end{theorem}
\begin{theorem}[Hahn-Banach theorem]
Let $E\ne\{0\}$ be a normed vector space.
\begin{enumerate}
\item If $F\subseteq E$ is a subspace and $u\in F^*$, then $\exists v\in E^*$ such that prolongates $u$ and $\norm{v}=\norm{u}$.
\item If $F\subseteq E$ is a subspace and $u\in F^*$, then $\exists v\in E^*$ such that extends $u$ and $\norm{v}=\norm{u}$.
\item For all $a\in E$, $\exists v\in E^*$ such that $v(a)=\norm{a}$ and $\norm{v}=1$.
\item If $F\subseteq E$ is a closed subspace and $a\in E\setminus F$, then $\exists v\in E^*$ such that $v(a)=1$ and $v(F)=\{0\}$.
\end{enumerate}
Expand All @@ -1306,6 +1309,15 @@
\begin{proposition}
Let $E$, $F$ be normed vector spaces. The function $$\function{}{\mathcal{L}(E,F)}{\mathcal{L}(F^*,E^*)}{T}{T^*}$$ is linear, bijective and isometric. That is, $\norm{T}=\norm{T^*}$.
\end{proposition}
\begin{theorem}
Let $\Omega\subseteq \RR^n$ be a measurable set, $1\leq p\leq \infty$ and $q$ be the Hölder conjugate of $p$. Then:
\begin{itemize}
\item If $1<p<\infty$, then ${(L^p(\Omega))}^*=L^q(\Omega)$.
\item If $p=1$, then ${(L^1(\Omega))}^*=L^\infty(\Omega)$.
\item If $p=\infty$, then ${(L^\infty(\Omega))}^*\supsetneq L^1(\Omega)$.
\end{itemize}
In particular, for $1<p<\infty$, $L^p(\Omega)$ is reflexive, while $L^1(\Omega)$ and $L^\infty(\Omega)$ are not.
\end{theorem}
\subsubsection{Spectrum and eigenvalues}
\begin{proposition}
Let $E$ be a Banach space and $T\in\mathcal{L}(E)$. Then, $\forall \alpha\in\KK$, $\im(T-\alpha\id)$ and $\ker(T-\alpha\id)$ are invariant over $T$. Moreover, if $\alpha\ne 0$, the function $$\function{S}{\ker(T-\alpha\id)}{\ker(T-\alpha\id)}{x}{\alpha x}$$ is an isomorphism.
Expand Down Expand Up @@ -1372,7 +1384,7 @@
\item The limit $Tx:=\displaystyle\lim_{n\to\infty}T_nx$ exists $\forall x\in D\subseteq E$, where $D$ is a dense set in $E$.
\item The sequence $(T_nx)$ is bounded $\forall x\in E$.
\end{itemize}
Then, $T$ can be prolongated into a bounded operator such that: $$\norm{T}\leq \liminf_{n\to\infty}\norm{T_n}$$
Then, $T$ can be extended into a bounded operator such that: $$\norm{T}\leq \liminf_{n\to\infty}\norm{T_n}$$
\end{corollary}
\subsection{Hilbert spaces}
\subsubsection{Inner products}
Expand Down
52 changes: 52 additions & 0 deletions Mathematics/5th/Advanced_probability/Advanced_probability.tex
Original file line number Diff line number Diff line change
Expand Up @@ -221,5 +221,57 @@
\Exp(f(X)\mid Y)=\int_\RR{f(x)\dd{\mathcal{L}^{X\mid Y}(Y,x)}}
$$
\end{theorem}
\subsection{Martingales}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob)$ be a probability space. A \emph{filtration} is a sequence of sub-$\sigma$-algebras ${(F_n)}_{n\in\NN}$ such that $\forall n\in\NN$, $F_n\subseteq F_{n+1}$. The tuple $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ is called a \emph{filtered probability space}.
\end{definition}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space. A stochastic process ${(X_n)}_{n\in\NN}$ is \emph{adapted} to ${(F_n)}_{n\in\NN}$ if $\forall n\in\NN$, $X_n$ is $F_n$-measurable.
\end{definition}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space and ${(M_n)}_{n\in\NN}$ be an adapted stochastic process. We say that ${(M_n)}_{n\in\NN}$ is a \emph{martingale} if $\forall n\in\NN$, $\Exp(\abs{M_n})<\infty$ and $\Exp(M_{n+1}\mid F_n)=M_n$.
\end{definition}
\begin{remark}
A \emph{submartingale} and \emph{supermartingale} are defined similarly, but with $\Exp(M_{n+1}\mid F_n)\geq M_n$ and $\Exp(M_{n+1}\mid F_n)\leq M_n$ respectively.
\end{remark}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space. A \emph{stopping time} is a random variable $\tau:\Omega\to \NN\cup\{\infty\}$ such that $\forall n\in\NN$, $\{\tau\leq n\}\in F_n$.
\end{definition}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space, $\tau$ be a stopping time and $M:={(M_n)}_{n\in\NN}$ be a process. We define the \emph{stopped process} $M^\tau:={(M_{\tau\wedge n})}_{n\in\NN}$.
\end{definition}
\begin{proposition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space, $\tau$ be a stopping time and $M:={(M_n)}_{n\in\NN}$ be a martingale. Then, $M^\tau:={(M_{\tau\wedge n})}_{n\in\NN}$ is a martingale.
\end{proposition}
\begin{corollary}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space, $\tau$ be a bounded stopping time and $M:={(M_n)}_{n\in\NN}$ be a martingale. Then, $\Exp(M_\tau)=\Exp(M_0)$.
\end{corollary}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space, $\tau$ be a stopping time. We define:
$$
\mathcal{F}_\tau:=\{A\in\mathcal{F}:\forall n\in\NN, A\cap \{\tau=n\}\in F_n\}
$$
\end{definition}
\begin{remark}
It can be seen that in the above definition, $\mathcal{F}_\tau$ is a $\sigma$-algebra.
\end{remark}
\begin{proposition}
Let $(\Omega,\mathcal{F},\Prob,{(F_n)}_{n\in\NN})$ be a filtered probability space, $\rho\leq\tau$ be two bounded stopping times, and $M$ be a martingale. Then, $\Exp(M_\tau\mid \mathcal{F}_\rho)=M_\rho$.
\end{proposition}
\begin{theorem}
Let $(\Omega,\mathcal{F},\Prob)$ be a probability space and ${(M_n)}_{n\in\NN}$ be a martingale such that $\sup_{n\in\NN}{\Exp(\abs{M_n})}<\infty$. Then, there exists a random variable $M_\infty$ such that $M_n\overset{\text{a.s.}}{\to} M_\infty$.
\end{theorem}
\begin{definition}
Let $(\Omega,\mathcal{F},\Prob)$ be a probability space. A family of random variables ${(X_t)}_{t\in I}$ is said to be \emph{uniformly integrable} if:
$$
\lim_{a\to\infty}{\sup_{t\in I}{\Exp(\abs{X_t}\indi{\abs{X_t}>a})}}=0
$$
\end{definition}
\begin{proposition}
Let $(\Omega,\mathcal{F},\Prob)$ be a probability space and ${(X_n)}_{n\in\NN}$ be a family of uniformly integrable random variables such that $X_n\overset{\text{a.s.}}{\to} X$. Then, $X$ is integrable and $\Exp(X_n)\to \Exp(X)$.
\end{proposition}
\begin{theorem}
Let $(\Omega,\mathcal{F},\Prob)$ be a probability space and ${(M_n)}_{n\in\NN}$ be a martingale bounded in $L^p$, $1<p<\infty$. Then, there exists a random variable $M_\infty$ such that $M_n\overset{L^p}{\to} M_\infty$ and $M_n\overset{\text{a.s.}}{\to} M_\infty$.
\end{theorem}
\end{multicols}
\end{document}
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,57 @@
\begin{document}
\changecolor{ATFAPDE}
\begin{multicols}{2}[\section{Advanced topics in functional analysis and PDEs}]
\subsection{\texorpdfstring{$L^p$}{Lp} spaces}
\subsubsection{Topologies of \texorpdfstring{$L^p$}{Lp} spaces}
\begin{definition}
Let $E$ be a Banach space and ${(x_n)}_{n\in\NN}\in E$. We say that ${(x_n)}_{n\in\NN}$ \emph{converges weakly} to $x\in E$ if $\forall f\in E^*$ we have:
$$
\lim_{n\to\infty}{f(x_n)}=f(x)
$$
We denote this by $x_n\rightharpoonup x$.
\end{definition}
\begin{definition}
Let $E$ be a Banach space and ${(x_n)}_{n\in\NN}\in E$. We say that ${(x_n)}_{n\in\NN}$ \emph{converges strongly} to $x\in E$ if $\forall f\in E^*$ we have:
$$
\lim_{n\to\infty}{\norm{x_n-x}}=0
$$
We denote this by $x_n\to x$.
\end{definition}
\begin{definition}
Let $E$ be a Banach space and ${(x_n)}_{n\in\NN}\in E$. Assume $E=F^*$, where $F$ is a Banach space. Then, we say that ${(x_n)}_{n\in\NN}$ \emph{converges weakly-*} to $x\in E$ if $\forall f\in F$ we have:
$$
\lim_{n\to\infty}{x_n(f)}=x(f)
$$
We denote this by $x_n\overset{*}\rightharpoonup x$.
\end{definition}
\begin{theorem}
Let $E$ be a Banach space and ${(x_n)}_{n\in\NN}\in E$. Then:
\begin{enumerate}
\item If $x_n\to x$, then $x_n\rightharpoonup x$.
\item If $E$ is reflexive then weak convergence is equivalent to weak-* convergence.
\item If $x_n\to x$, $x_n\rightharpoonup x$ or $x_n\overset{*}\rightharpoonup x$, then $(x_n)$ is bounded.
\item Let ${(L_n)}_{n\in\NN}\in E^*$. If $x_n\to x$ in $E$ and $L_n\overset{*}\rightharpoonup L$ in $E^*$, then $L_n(x_n)\to L(x)$ in $\CC$.
\end{enumerate}
\end{theorem}
\begin{theorem}[Banach-Alaoglu theorem]
Let $\Omega\subseteq \RR^d$ be a set and $1<p<\infty$. If $(f_n)$ is a bounded sequence in $L^p(\Omega)$, then there is a subsequence $(f_{n_k})$ and $f\in L^p(\Omega)$ so that $f_{n_k}\rightharpoonup f$ in $L^p(\Omega)$. If $p=\infty$, then there is a subsequence $(f_{n_k})$ and $f\in L^\infty(\Omega)$ so that $f_{n_k}\overset{*}\rightharpoonup f$ in $L^\infty(\Omega)$.
\end{theorem}
\subsubsection{Lower-semicontinuous functions and convexity}
\begin{definition}
Let $E$ be a Banach space, $(x_n)\in E$ and $f:E\to\RR$. We say that $f$ is \emph{strongly lower-semicontinuous} if:
$$
x_n\to x\implies f(x)\leq \liminf_{n\to\infty}{f(x_n)}
$$
\end{definition}
\begin{remark}
Analogously, we can define \emph{weakly lower-semicontinuity} and \emph{weak-* lower-semicontinuity} by replacing $x_n\to x$ by $x_n\rightharpoonup x$ and $x_n\overset{*}\rightharpoonup x$ respectively.
\end{remark}
\begin{theorem}
Let $E$ be a Banach space and $f:E\to\RR$ be convex. Then, $f$ is strongly lower-semicontinuous if and only if $f$ is weakly lower-semicontinuous. In particular, the map ${\norm{\cdot}}_E$ is weakly lower-semicontinuous.
\end{theorem}
\begin{theorem}
Let $\Omega\subseteq \RR^d$ be a set and $1<p<\infty$. Then if $f_n\rightharpoonup f$ in $L^p(\Omega)$, then: $$\norm{f}_p\leq \liminf_{n\to\infty}{\norm{f_n}_p}$$ In addition, if $\displaystyle\norm{f}_p=\lim_{n\to\infty}{\norm{f_n}_p}$, then $f_n\to f$ in $L^p(\Omega)$.
\end{theorem}
\subsection{Sobolev spaces}
\begin{definition}[Sobolev spaces]
Let $\Omega\subseteq \RR^d$ be an open set, $m\in\NN$ and $1\leq p\leq \infty$. We define the \emph{Sobolev spaces} $W^{m,p}$ as:
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Mathematics and Physics summaries

Summary of each subject in Mathematics and Physics degree at UAB (Universitat Autònoma de Barcelona).
Summary of each subject in Mathematics and Physics degree at UAB (Universitat Autònoma de Barcelona) at Paris Dauphine - PSL University.

### TODO

Expand Down
2 changes: 1 addition & 1 deletion index.html
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
<div class="header">
<h1 class="special-color">Mathematics and Physics notes</h1>
<br>
<p>This website intends to summarize some notes about each <q>important</q> subject in Mathematics and Physics degree at Autonomous University of Barcelona (UAB).</p>
<p>This website intends to summarize some notes about each <q>important</q> subject in Mathematics and Physics degree at Autonomous University of Barcelona (UAB) and at Paris Dauphine - PSL University.</p>
<p>You can download the sections separately as you like or the whole file of Mathematics or Physics (better in order to avoid linking errors).</p>
</div>
<div class="row">
Expand Down
Loading

0 comments on commit 4aaded4

Please sign in to comment.