Skip to content

Commit

Permalink
typos
Browse files Browse the repository at this point in the history
  • Loading branch information
victorballester7 committed Jul 29, 2023
1 parent 6f69305 commit 1ae7a80
Show file tree
Hide file tree
Showing 3 changed files with 4 additions and 4 deletions.
4 changes: 2 additions & 2 deletions Mathematics/3rd/Probability/Probability.tex
Original file line number Diff line number Diff line change
Expand Up @@ -126,10 +126,10 @@
Let $(\Omega,\mathcal{A},\Prob)$ be a probability space such that $\Omega$ is finite and all its elements are equiprobable. Let $A\in\mathcal{A}$ be an event. Then: $$\Prob(A)=\frac{|A|}{|\Omega|}$$
\end{proposition}
\begin{theorem}[Continuity from below]
Let\\ $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be an increasing sequence of events, that is: $$A_1\subseteq A_2\subseteq\cdots\subseteq A_n\subseteq\cdots$$ Let $A:=\bigcup_{n=1}^\infty A_n$. Then: $$\Prob(A):=\lim_{n\to\infty}\Prob(A_n)$$
Let\\ $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be an increasing sequence of events, that is: $$A_1\subseteq A_2\subseteq\cdots\subseteq A_n\subseteq\cdots$$ Let $A:=\bigcup_{n=1}^\infty A_n$. Then: $$\Prob(A)=\lim_{n\to\infty}\Prob(A_n)$$
\end{theorem}
\begin{corollary}[Continuity from above]
Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be a decreasing sequence of events, that is: $$A_1\supseteq A_2\supseteq\cdots\supseteq A_n\supseteq\cdots$$ Let $A:=\bigcap_{n=1}^\infty A_n$. Then: $$\Prob(A):=\lim_{n\to\infty}\Prob(A_n)$$
Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be a decreasing sequence of events, that is: $$A_1\supseteq A_2\supseteq\cdots\supseteq A_n\supseteq\cdots$$ Let $A:=\bigcap_{n=1}^\infty A_n$. Then: $$\Prob(A)=\lim_{n\to\infty}\Prob(A_n)$$
\end{corollary}
\begin{proposition}[Countable subadditivity]
Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be a sequence of events. Then: $$\Prob\left(\bigcup_{n=1}^\infty A_n\right)\leq\sum_{n=1}^\infty \Prob(A_n)$$
Expand Down
2 changes: 1 addition & 1 deletion Mathematics/3rd/Statistics/Statistics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
Let $(\Omega,\mathcal{A},\Prob)$ be a probability space\footnote{From now on we will assume that the random variables are defined always in the same probability space $(\Omega,\mathcal{A},\Prob)$, so we will omit to say that.}, $\Theta$ be a set, $n\in\NN$ and $x_1,\ldots,x_n$ be a collection of data that we may assume that they are the outcomes of a random vector $\vf{X}_n=(X_1,\ldots,X_n)$ defined on $(\Omega,\mathcal{A},\Prob)$. Suppose, moreover, that the outcomes of $\vf{X}_n$ are in a set $\mathcal{X}\subseteq\RR^n$, the law $\vf{X}_n$ is one in the set $\mathcal{P}=\{\Prob_\theta^{\vf{X}_n}:\theta\in\Theta\}$ and $\mathcal{F}$ is a $\sigma$-algebra over $\mathcal{X}$\footnote{That is, $\mathcal{P}$ denotes a family of probability distributions of $\vf{X}_n$ in $(\mathcal{X},\mathcal{F})$, indexed by $\theta\in\Theta$. Note that we denote that distribution of $\vf{X}_n$ by $\Prob^{\vf{X}_n}$ to distinguish it from the probability distribution $\Prob_{\vf{X}_n}$ in $(\Omega,\mathcal{A},\Prob)$.}. We define a \emph{statistical model} as the triplet $(\mathcal{X},\mathcal{F},\mathcal{P})$\footnote{Often we will take $\mathcal{F}=\mathcal{B}(\mathcal{X})$.}. The set $\mathcal{X}$ is called \emph{sample space}, and the set $\Theta$, \emph{parameter space}. The random vector $\vf{X}_n$ is called \emph{random sample}. If, moreover, $X_1,\ldots,X_n$ are \iid random variables, $\vf{X}_n$ is called a \emph{simple random sample}. The value $(x_1,\ldots,x_n)\in\mathcal{X}$ is called a \emph{realization} of $(X_1,\ldots,X_n)$.
\end{definition}
\begin{definition}
Let $(\mathcal{X},\mathcal{F},\{\Prob_\theta^{\vf{X}_n}:\theta\in\Theta\})$ be a statistical model. We say $\mathcal{P}=\{\Prob_\theta^{\vf{X}_n}:\theta\in\Theta\})$ is \emph{identifiable} if the function $$\function{}{\Theta}{\mathcal{P}}{\theta}{\Prob_\theta^{\vf{X}_n}}$$ is injective\footnote{From now on, we will suppose that all the sets $\mathcal{P}$ are always identifiable.}.
Let $(\mathcal{X},\mathcal{F},\{\Prob_\theta^{\vf{X}_n}:\theta\in\Theta\})$ be a statistical model. We say $\mathcal{P}=\{\Prob_\theta^{\vf{X}_n}:\theta\in\Theta\}$ is \emph{identifiable} if the function $$\function{}{\Theta}{\mathcal{P}}{\theta}{\Prob_\theta^{\vf{X}_n}}$$ is injective\footnote{From now on, we will suppose that all the sets $\mathcal{P}$ are always identifiable.}.
\end{definition}
\begin{definition}
A statistical model $(\mathcal{X},\mathcal{F},\{\Prob_\theta^{\vf{X}_n}:\theta\in\Theta\})$ is said to be \emph{parametric} if $\Theta\subseteq \RR^d$ for some $d\in\NN$\footnote{There are cases where $\Theta$ is not a subset of $\RR^d$. For example, we could have $\Theta=\{f:\RR\rightarrow\RR_{\geq 0} : \int_{-\infty}^{+\infty}f(x)\dd{x}=1\}$.}.
Expand Down
2 changes: 1 addition & 1 deletion Mathematics/4th/Dynamical_systems/Dynamical_systems.tex
Original file line number Diff line number Diff line change
Expand Up @@ -809,7 +809,7 @@
$\cdots$ & $2^2\cdot 3$ & $2^2\cdot5$ & $\cdots$ & $2^2\cdot(2n+1)$ & $\cdots$ \\
\multicolumn{1}{c}{} & \multicolumn{1}{c}{$\vdots\quad\ \ $} & \multicolumn{1}{c}{$\vdots\qquad\!$} & \multicolumn{1}{c}{} & \multicolumn{1}{c}{$\vdots\qquad\!$} & \multicolumn{1}{c}{} \\
$\cdots$ & $2^k\cdot 3$ & $2^k\cdot5$ & $\cdots$ & $2^k\cdot(2n+1)$ & $\cdots$ \\
$\cdots$ & $2^k$ & $\cdots$ & $2^4$ & $2$ & $1$ \\
$\cdots$ & $2^k$ & $\cdots$ & $2^2$ & $2$ & $1$ \\
\end{tabular}
\end{center}
\end{definition}
Expand Down

0 comments on commit 1ae7a80

Please sign in to comment.