Skip to content

viam-modules/torchvision

Repository files navigation

Viam Torchvision Module

This is a Viam module providing a model of vision service for TorchVision's New Multi-Weight Support API.

For a given model architecture (e.g. ResNet50), multiple weights can be available and each of those weights comes with Metadata (preprocessing and labels).

Getting started

To use this module, follow these instructions to add a module from the Viam Registry and select the viam:vision:torchvision model from the torchvision module. Depending on the type of models configured, the module implements:

  • For detectors:

    • GetDetections()
    • GetDetectionsFromCamera()
  • For classifiers:

    • GetClassifications()
    • GetClassificationsFromCamera()

Note

See vision service API for more details.

Configure your torchvision vision service

Note

Before configuring your vision service, you must create a robot.

Navigate to the Config tab of your robot’s page in the Viam app. Click on the Services subtab and click Create service. Select the Vision type, then select the torchvision model. Enter a name for your service and click Create.

Example of config with a camera and transform camera

The following json config file includes the following ressources:

  • TorchvVision module
  • modular ressource (Torchvision vision service)
  • a camera
  • a transform camera
{
  "modules": [
    {
      "executable_path": "/path/to/run.sh",
      "name": "mytorchvisionmodule",
      "type": "local"
    }
  ],
  "services": [
    {
      "attributes": {
        "model_name": "fasterrcnn_mobilenet_v3_large_320_fpn",
        "labels_confidences": {"grasshopper": 0.5, 
                                "cricket": 0.45 },
        "default_minimum_confidence": 0.3
        
      },
      "name": "detector-module",
      "type": "vision",
      "namespace": "rdk",
      "model": "viam:vision:torchvision"
    }
  ],
    "components": [
    {
      "namespace": "rdk",
      "attributes": {
        "video_path": "video0"
      },
      "depends_on": [],
      "name": "cam",
      "model": "webcam",
      "type": "camera"
    },
    {
      "model": "transform",
      "type": "camera",
      "namespace": "rdk",
      "attributes": {
        "source": "cam",
        "pipeline": [
          {
            "attributes": {
              "detector_name": "detector-module",
              "confidence_threshold": 0.5
            },
            "type": "detections"
          }
        ]
      },
      "depends_on": [],
      "name": "detections"
    }
  ]
}

Attributes description

The only required attribute to configure your torchvision vision service is a model_name:

Name Type Inclusion Default Description
model_name string Required Vision model name as expected by the method get_model() from torchvision multi-weight API.

Supplementaries

Optional config attributes

Name Type Inclusion Default Description
weights string Optional DEFAULT Weights model name as expected by the method get_model() from torchvision multi-weight API.
default_minimum_confidence float Optional Default minimum confidence for filtering all labels that are not specified in label_confidences.
labels_confidences dict[str, float] Optional Dictionary specifying minimum confidence thresholds for specific labels. Example: {"grasshopper": 0.5, "cricket": 0.45}. If a label has a confidence set lower that default_minimum_confidence, that confidence over-writes the default for the specified label if labels_confidences is left blank, no filtering on labels will be applied.
use_weight_transform bool Optional True Loads preprocessing transform from weights metadata.
input size List[int] Optional None Resize the image. Overides resize from weights metadata.
mean_rgb [float, float, float] Optional [0, 0, 0] Specifies the mean and standard deviation values for normalization in RGB order
std_rgb [float, float, float] Optional [1, 1, 1] Specifies the standard deviation values for normalization in RGB order.
swap_r_and_b bool Optional False If True, swaps the R and B channels in the input image. Use this if the images passed as inputs to the model are in the OpenCV format.
channel_last bool Optional False If True, the image tensor will be converted to channel-last format. Default is False.

Preprocessing transforms behavior and order:

  • If there are a transform in the metadata of the weights and use_weight_transform is True, weights_transform is added to the pipeline.
  • If input_size is provided, the image is resized using v2.Resize() to the specified size.
  • If both mean and standard deviation values are provided in normalize, the image is normalized using v2.Normalize() with the specified mean and standard deviation values.
  • If swap_R_and_B is set to True, first and last channel are swapped.
  • If channel_last is True, a transformation is applied to conv.ert the channel order to the last dimension format. (C, H ,W) -> (H, W, X).

RESSOURCES

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published