forked from image-rs/jpeg-decoder
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
The code is a direct translation of the sse3 code for x86, and provides approximately a 0.67x decrease of image decoding time on a Samsung A51. Fixes image-rs#202, or at least improves the situation. decode a 2268x1512 JPEG time: [83.619 ms 85.692 ms 87.848 ms] decode a 2268x1512 JPEG time: [56.209 ms 57.019 ms 57.876 ms] change: [-35.318% -33.460% -31.535%] (p = 0.00 < 0.05)
- Loading branch information
Showing
4 changed files
with
242 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -29,3 +29,5 @@ harness = false | |
[features] | ||
default = ["rayon"] | ||
platform_independent = [] | ||
aarch64_neon = [] | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
#[cfg(all(feature = "aarch64_neon", target_arch = "aarch64"))] | ||
use core::arch::aarch64::*; | ||
|
||
#[cfg(all(feature = "aarch64_neon", target_arch = "aarch64"))] | ||
#[target_feature(enable = "neon")] | ||
unsafe fn idct8(data: &mut [int16x8_t; 8]) { | ||
// The fixed-point constants here are obtained by taking the fractional part of the constants | ||
// from the non-SIMD implementation and scaling them up by 1<<15. This is because | ||
// vqrdmulhq_n_s16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some | ||
// slight differences in rounding). | ||
|
||
// The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it | ||
// doesn't apply any further scaling and fixed point constants have a different precision. | ||
|
||
let p2 = data[2]; | ||
let p3 = data[6]; | ||
let p1 = vqrdmulhq_n_s16(vqaddq_s16(p2, p3), 17734); // 0.5411961 | ||
let t2 = vqsubq_s16( | ||
vqsubq_s16(p1, p3), | ||
vqrdmulhq_n_s16(p3, 27779), // 0.847759065 | ||
); | ||
let t3 = vqaddq_s16(p1, vqrdmulhq_n_s16(p2, 25079)); // 0.765366865 | ||
|
||
let p2 = data[0]; | ||
let p3 = data[4]; | ||
let t0 = vqaddq_s16(p2, p3); | ||
let t1 = vqsubq_s16(p2, p3); | ||
|
||
let x0 = vqaddq_s16(t0, t3); | ||
let x3 = vqsubq_s16(t0, t3); | ||
let x1 = vqaddq_s16(t1, t2); | ||
let x2 = vqsubq_s16(t1, t2); | ||
|
||
let t0 = data[7]; | ||
let t1 = data[5]; | ||
let t2 = data[3]; | ||
let t3 = data[1]; | ||
|
||
let p3 = vqaddq_s16(t0, t2); | ||
let p4 = vqaddq_s16(t1, t3); | ||
let p1 = vqaddq_s16(t0, t3); | ||
let p2 = vqaddq_s16(t1, t2); | ||
let p5 = vqaddq_s16(p3, p4); | ||
let p5 = vqaddq_s16(p5, vqrdmulhq_n_s16(p5, 5763)); // 0.175875602 | ||
|
||
let t0 = vqrdmulhq_n_s16(t0, 9786); // 0.298631336 | ||
let t1 = vqaddq_s16( | ||
vqaddq_s16(t1, t1), | ||
vqrdmulhq_n_s16(t1, 1741), // 0.053119869 | ||
); | ||
let t2 = vqaddq_s16( | ||
vqaddq_s16(t2, vqaddq_s16(t2, t2)), | ||
vqrdmulhq_n_s16(t2, 2383), // 0.072711026 | ||
); | ||
let t3 = vqaddq_s16(t3, vqrdmulhq_n_s16(t3, 16427)); // 0.501321110 | ||
|
||
let p1 = vqsubq_s16(p5, vqrdmulhq_n_s16(p1, 29490)); // 0.899976223 | ||
let p2 = vqsubq_s16( | ||
vqsubq_s16(vqsubq_s16(p5, p2), p2), | ||
vqrdmulhq_n_s16(p2, 18446), // 0.562915447 | ||
); | ||
|
||
let p3 = vqsubq_s16( | ||
vqrdmulhq_n_s16(p3, -31509), // -0.961570560 | ||
p3, | ||
); | ||
let p4 = vqrdmulhq_n_s16(p4, -12785); // -0.390180644 | ||
|
||
let t3 = vqaddq_s16(vqaddq_s16(p1, p4), t3); | ||
let t2 = vqaddq_s16(vqaddq_s16(p2, p3), t2); | ||
let t1 = vqaddq_s16(vqaddq_s16(p2, p4), t1); | ||
let t0 = vqaddq_s16(vqaddq_s16(p1, p3), t0); | ||
|
||
data[0] = vqaddq_s16(x0, t3); | ||
data[7] = vqsubq_s16(x0, t3); | ||
data[1] = vqaddq_s16(x1, t2); | ||
data[6] = vqsubq_s16(x1, t2); | ||
data[2] = vqaddq_s16(x2, t1); | ||
data[5] = vqsubq_s16(x2, t1); | ||
data[3] = vqaddq_s16(x3, t0); | ||
data[4] = vqsubq_s16(x3, t0); | ||
} | ||
|
||
#[cfg(all(feature = "aarch64_neon", target_arch = "aarch64"))] | ||
#[target_feature(enable = "neon")] | ||
unsafe fn transpose8(data: &mut [int16x8_t; 8]) { | ||
// Use NEON's 2x2 matrix transposes (vtrn) to do the transposition in each 4x4 block, then | ||
// combine the 4x4 blocks. | ||
let a01 = vtrnq_s16(data[0], data[1]); | ||
let a23 = vtrnq_s16(data[2], data[3]); | ||
|
||
let four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.0), vreinterpretq_s32_s16(a23.0)); | ||
let four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.1), vreinterpretq_s32_s16(a23.1)); | ||
|
||
let a45 = vtrnq_s16(data[4], data[5]); | ||
let a67 = vtrnq_s16(data[6], data[7]); | ||
|
||
let four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.0), vreinterpretq_s32_s16(a67.0)); | ||
let four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.1), vreinterpretq_s32_s16(a67.1)); | ||
|
||
data[0] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.0), vget_low_s32(four2.0))); | ||
data[1] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.0), vget_low_s32(four3.0))); | ||
data[2] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four0.1), vget_low_s32(four2.1))); | ||
data[3] = vreinterpretq_s16_s32(vcombine_s32(vget_low_s32(four1.1), vget_low_s32(four3.1))); | ||
data[4] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.0), vget_high_s32(four2.0))); | ||
data[5] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.0), vget_high_s32(four3.0))); | ||
data[6] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four0.1), vget_high_s32(four2.1))); | ||
data[7] = vreinterpretq_s16_s32(vcombine_s32(vget_high_s32(four1.1), vget_high_s32(four3.1))); | ||
} | ||
|
||
#[cfg(all(feature = "aarch64_neon", target_arch = "aarch64"))] | ||
#[target_feature(enable = "neon")] | ||
pub unsafe fn dequantize_and_idct_block_8x8( | ||
coefficients: &[i16; 64], | ||
quantization_table: &[u16; 64], | ||
output_linestride: usize, | ||
output: &mut [u8], | ||
) { | ||
// The loop below will write to positions [output_linestride * i, output_linestride * i + 8) | ||
// for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7, | ||
// and if that position is in-bounds, so are all other accesses. | ||
assert!( | ||
output.len() | ||
> output_linestride | ||
.checked_mul(7) | ||
.unwrap() | ||
.checked_add(7) | ||
.unwrap() | ||
); | ||
|
||
const SHIFT: i32 = 3; | ||
|
||
// Read the DCT coefficients, scale them up and dequantize them. | ||
let mut data = [vdupq_n_s16(0); 8]; | ||
for i in 0..8 { | ||
data[i] = vshlq_n_s16( | ||
vmulq_s16( | ||
vld1q_s16(coefficients.as_ptr().wrapping_add(i * 8)), | ||
vreinterpretq_s16_u16(vld1q_u16(quantization_table.as_ptr().wrapping_add(i * 8))), | ||
), | ||
SHIFT, | ||
); | ||
} | ||
|
||
// Usual column IDCT - transpose - column IDCT - transpose approach. | ||
idct8(&mut data); | ||
transpose8(&mut data); | ||
idct8(&mut data); | ||
transpose8(&mut data); | ||
|
||
for i in 0..8 { | ||
// The two passes of the IDCT algorithm give us a factor of 8, so the shift here is | ||
// increased by 3. | ||
// As values will be stored in a u8, they need to be 128-centered and not 0-centered. | ||
// We add 128 with the appropriate shift for that purpose. | ||
const OFFSET: i16 = 128 << (SHIFT + 3); | ||
// We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting. | ||
const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1; | ||
|
||
let data_with_offset = vqaddq_s16(data[i], vdupq_n_s16(OFFSET + ROUNDING_BIAS)); | ||
|
||
vst1_u8( | ||
output.as_mut_ptr().wrapping_add(output_linestride * i), | ||
vqshrun_n_s16(data_with_offset, SHIFT + 3), | ||
); | ||
} | ||
} | ||
|
||
#[cfg(all(feature = "aarch64_neon", target_arch = "aarch64"))] | ||
#[target_feature(enable = "neon")] | ||
pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize { | ||
assert!(output.len() % 3 == 0); | ||
let num = output.len() / 3; | ||
assert!(num <= y.len()); | ||
assert!(num <= cb.len()); | ||
assert!(num <= cr.len()); | ||
let num_vecs = num / 8; | ||
|
||
for i in 0..num_vecs { | ||
const SHIFT: i32 = 6; | ||
// Load. | ||
let y = vld1_u8(y.as_ptr().wrapping_add(i * 8)); | ||
let cb = vld1_u8(cb.as_ptr().wrapping_add(i * 8)); | ||
let cr = vld1_u8(cr.as_ptr().wrapping_add(i * 8)); | ||
|
||
// Convert to 16 bit and shift. | ||
let y = vreinterpretq_s16_u16(vshll_n_u8(y, SHIFT)); | ||
let cb = vreinterpretq_s16_u16(vshll_n_u8(cb, SHIFT)); | ||
let cr = vreinterpretq_s16_u16(vshll_n_u8(cr, SHIFT)); | ||
|
||
// Add offsets | ||
let y = vqaddq_s16(y, vdupq_n_s16((1 << SHIFT) >> 1)); | ||
let c128 = vdupq_n_s16(128 << SHIFT); | ||
let cb = vqsubq_s16(cb, c128); | ||
let cr = vqsubq_s16(cr, c128); | ||
|
||
// Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772 | ||
let cr_140200 = vqaddq_s16(vqrdmulhq_n_s16(cr, 13173), cr); | ||
let cb_034414 = vqrdmulhq_n_s16(cb, 11276); | ||
let cr_071414 = vqrdmulhq_n_s16(cr, 23401); | ||
let cb_177200 = vqaddq_s16(vqrdmulhq_n_s16(cb, 25297), cb); | ||
|
||
// Last conversion step. | ||
let r = vqaddq_s16(y, cr_140200); | ||
let g = vqsubq_s16(y, vqaddq_s16(cb_034414, cr_071414)); | ||
let b = vqaddq_s16(y, cb_177200); | ||
|
||
// Shift back and convert to u8. | ||
let r = vqshrun_n_s16(r, SHIFT); | ||
let g = vqshrun_n_s16(g, SHIFT); | ||
let b = vqshrun_n_s16(b, SHIFT); | ||
|
||
// Shuffle + store. | ||
vst3_u8( | ||
output.as_mut_ptr().wrapping_add(24 * i), | ||
uint8x8x3_t(r, g, b), | ||
); | ||
} | ||
|
||
num_vecs * 8 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters