[CVPRw 2023] Source Code for our Work "Certified Adversarial Robustness Within Multiple Perturbation Bounds"
Soumalya Nandi, Sravanti Addepalli, Harsh Rangwani, R. Venkatesh Babu
Video Analytics Lab, Indian Institute of Science, Bengaluru
Make model certifiably robust against both
python3 code/train.py dataset = "cifar10" arch = "cifar_resnet110" outdir = {path_to_output_location} --epochs 300 --batch 400 --noise_sd_gauss 1.00 --noise_sd_unif 0.866 --sim_reg 3 --beta 2 --log_file_name {"filename"} --checkpoint_name {"checkpoint_name"}
python3 code/predict.py dataset = "cifar10" base_classifier = {"path to the saved trained model"} noise_sd_gauss = 1.00 noise_sd_unif = 1.16 outfile = {"path_to_output_file_location"} --skip 1 --N 100
python3 code/certify.py dataset = "cifar10" base_classifier = {"path to the saved trained model"} noise_sd_gauss = 1.00 noise_sd_unif = 1.16 outfile = {"path_to_output_file_location"} --skip 1 --start 0
python3 code/analyze.py --Gauss_smoothing_file {"path_to_gaussian_smoothing_output_file"} --Unif_smoothing_file {"path_to_uniform_smoothing_output_file"} --Gauss_legend "Gaussian Smoothing $\sigma = 0.25$" --Unif_legend "Uniform Smoothing $\sigma = 0.25$" --outfile {"path to output image"}
@InProceedings{Nandi_2023_CVPR,
author = {Nandi, Soumalya and Addepalli, Sravanti and Rangwani, Harsh and Babu, R. Venkatesh},
title = {Certified Adversarial Robustness Within Multiple Perturbation Bounds},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2023},
pages = {2297-2304}
}