'keras_cifar10_prediction.ipynb' predict a webcam photo by a neaural network that is trained by CIFAR-10 datas.
'keras_cifar10_prediction.ipynb' visualizes CIFAR-10 image files label prediction results by a ResNet model or a CNN model. A fail prediction is displayed red text. left side text is a fail prediction, right side is a correct label.
- clone this repository using
git
:
git clone https://github.com/uchidama/CIFAR10-Prediction-In-Keras.git
cd
to the folder and run jupyter notebook:
cd CIFAR10-Prediction-In-Keras
jupyter notebook
- click 'keras_cifar10_prediction.ipynb' and run.
This software using Keras.
If you want to run without to think keras and backend deeplearning frameworks, enter this command.
pip install tensorflow==1.4.1
pip install keras==2.1.2
Then, enter this command to install other using python packages.
pip install -r requirements.txt
- cifar10_ResNet20v1_model.092.h5 is generated by cifar10_resnet.py in keras examples.
- keras_cifar10_trained_model.h5 is generated by cifar10_cnn.py in keras examples.