The python library for language modeling and fine tuning using Transformer based deep learning models with built-in Thai data set supported.
- Transformer Decoder-only model (Next token predicton objective function)
- Transformer Encoder-only model (Masked tokens prediction objective function)
- Sequence-to-Sequence Model
- Multi Class Classification
- Multi Label Classification
- NECTEC BEST2010 for Language Model
- Thailand Wikipedia Dump for Langauge Model
- NECTEC BEST2010 for Topic Classification
- Truevoice for Intention Detection
- Wisesight for Sentiment Analysis
- Wongnai for Rating Prediction
- Full word dictionary
- Bi-gram dictionary
- Sentencepiece coding
- Build in API server for quick deploying the model
- Automatic multi-GPUs detection and training support (Data Parallel)
- Automatic state saving and resume training
- Automatic saving best model and last model during training
- Automatic generate Tensorboard log
- Sequence generation from language model using ARGMAX, BEAM Search
- Support initialization from trained language model weights in fine tuning
- Modularized and fully extensible
The library requires python 3.6 or later. You can use pip3 to install the library as below:
pip3 install NLP_LIB
Or if you want to use CPU version of the library (not recommended for model training):
pip3 install NLP_LIB_cpu
For Language Model Training
python3 -m NLP_LIB <language_model>:<training_data_file>
For Fine Tuning
python3 -m NLP_LIB <language_model>:<training_data_file>:<finetune_model>:<finetune_data_file>
For lanching API Server, just add additional option the the command
serve
Train 6 layers of transformer decoder-only model with sentencepiece dict model with data in data/lm_train.txt
python3 -m NLP_LIB tf6-dec-sp:data/lm_train.txt
Finetune the above model with data in data/sp_train.txt, which is single class classifier of 3 possible values
python3 -m NLP_LIB tf6-dec-sp:data/lm_train.txt:sa3:data/sp_train.txt
Launch API Server for the above model
python3 -m NLP_LIB tf6-dec-sp:data/lm_train.txt:sa3:data/sp_train.txt serve
- The model API test page can be accessed at:
http://localhost:5555
For Lanugage Modeling (Minimum 1,000 sentences)
sentence 1
sentence 2
...
sentence N
Below is an example
นี่คือประโยคแรก
นี่คือประโยคที่สอง
...
นี่คือประโยคสุดท้าย
For Fine Tuning Classification Task (Minimum 320 sentences)
sentence 1[TAB]label
sentence 2[TAB]label
...
sentence N[TAB]label
Below is an example
ผลงานดีมากๆ positive
ส่งของมาแต่ใช้งานไม่ได้ negative
...
วันนี้อากาศเย็น neutral
python3 -m NLP_LIB <model_name | model_json_path> <operation> <extra_params>
- model_name: Predefined model name shipped with the library (See appendix A. for list of predefined models)
- model_json_path: JSON Configuration File path of the model (See appendix B. JSON file format)
- operation: train | predict | generate - default is train (See example section for how to use "generate" mode)
Train language model of 6 layers transformer decoder-only with default BEST2010 corpus
python3 -m NLP_LIB tf6-dec
Finetune 4 layers of transformer encoder-only with sentencepiece dict model on truevoice data
python3 -m NLP_LIB tf4-enc-sp+truevoice
Run prediction on input data file
python3 -m NLP_LIB tf4-enc-sp+truevoice predict file:input_data.txt
Run prediction on input string
python3 -m NLP_LIB tf4-dec-bigram+best2010 predict str:This,is,input,text
Run sequence generation for 20 tokens using BEAM search on 3 best prediction sequences
python3 -m NLP_LIB tf6-dec generate:20:beam3 str:This,is,seed,text
tf<N>-<Arch>-<Dict> : Transformer models
- N : Number of transformer layers, support 2, 4, 6 and 12. Default is 6.
- Arch: Architecture of language model, support "enc" and "dec" for encoder-only and decoder-only.
- Dict: Data transformation, support "full", "bigram" and "sp" for full word dict, bigram dict and sentencepiece dict. Default is "full"
Examples:
tf-dec
tf6-dec
tf4-enc-full
tf12-dec-sp
tf2-enc-bigram
tf<N>-<Arch>-<Dict>+<Finetune Data> : Transformer models
- N : Number of transformer layers, support 2, 4, 6 and 12. Default is 6.
- Arch: Architecture of language model, support "enc" and "dec" for encoder-only and decoder-only.
- Dict: Data transformation, support "full", "bigram" and "sp" for full word dict, bigram dict and sentencepiece dict. Default is "full"
- Finetune Data: Fine tuning data set, support "best2010", "truevoice", "wongnai" and "wisesight"
Examples:
tf-dec+best2010
tf6-dec+truevoice
tf4-enc-full+wongnai
tf12-dec-sp+wisesight
This file defines how to run the model training. The model training run is defined by 5 components below:
- Model : Model architecture to be used
- Dataset : Dataset to be used
- Input / Output Transformation : How to encode / decode input and output data
- Callbacks : List of additional flow need to be run in training loop
- Execution : Training processes to be used, for example what optimizer, how many epoch
The JSON file needs to supply configuration of each component, the overall format is shown below:
{
"model": {
"class": <CLASS NAME OF MODEL>,
"config": {
<CONFIGURATIONS OF THE MODEL>
}
},
"dataset": {
"class": <CLASS NAME OF DATA SET>,
"config": {
<CONFIGURATIONS OF THE DATA SET>
}
},
"input_transform": {
"class": <CLASS NAME OF INPUT TRANSFORMATION>,
"config": {
<CONFIGURATIONS OF THE INPUT TRANFORMATION>
}
},
"output_transform": {
"class": <CLASS NAME OF OUTPUT TRANSFORMATION>,
"config": {
<CONFIGURATIONS OF THE OUTPUT TRANFORMATION>
}
},
"callbacks": [
.... [MULTIPLE CALLBACK HOOKS] ....
{
"class": <CLASS NAME OF CALLBACK HOOKS>,
"config": {
<CONFIGURATIONS OF THE CALLBACK>
}
}
],
"execution": {
"config": {
<CONFIGURATIONS OF THE TRAINING PROCESS>
}
}
}
Overall is that the configuration of each module requires class name of the module and also configurations for them. The required / optional configurations of each module are depended on module class so you have to read document for each module class to find out how to config them. The class name of each module is used to look up for implementation of the module in the following directories:
- model => ./models
- dataset => ./datasets
- input / output transformations => ./transforms
- callbacks => ./callbacks
You can implement new module by putting module python class in above directories and the library will be able to resolve for implementation when it finds class name in JSON configuration file.
Below is example of JSON configuration file for training 12 layers of transformer decoder-only model with sentencepiece dictionary data transformation and dynamic learning rate on THWIKI data set:
{
"model": {
"class": "TransformerDecoderOnlyWrapper",
"config": {
"len_limit": 256,
"d_model": 512,
"d_inner_hid": 2048,
"n_head": 8,
"d_k": 512,
"d_v": 512,
"layers": 12,
"dropout": 0.1,
"share_word_emb": true,
"max_input_length": 256,
"cached_data_dir": "_cache_"
}
},
"dataset": {
"class": "THWIKILMDatasetWrapper",
"config": {
"base_data_dir": "_tmp_"
}
},
"input_transform": {
"class": "SentencePieceDictionaryWrapper",
"config": {
"column_id": 0,
"max_dict_size" : 15000,
"mask_last_token": false
}
},
"output_transform": {
"class": "SentencePieceDictionaryWrapper",
"config": {
"column_id": 1,
"max_dict_size" : 15000
}
},
"callbacks": [
{
"class": "DynamicLearningRateWrapper",
"config": {
"d_model": 512,
"warmup": 50000,
"scale": 0.5
}
}
],
"execution": {
"config": {
"optimizer": "adam",
"optimizer_params": [0.1, 0.9, 0.997, 1e-9],
"batch_size": 32,
"epochs": 60,
"watch_metric": "val_acc",
"output_dir": "_outputs_/thwikilm_tfbase12_dec_s2_sp",
"save_weight_history": false,
"resume_if_possible": true,
"multi_gpu": false
}
}
}
Below is another example of using the trained model above to finetune on TRUEVOICE data set. Note that we use "SequenceTransferLearningWrapper" model class, which accept configuration of language model to be used as an encoder and also the original data set configuration used to pre-train the encoder model:
{
"model": {
"class": "SequenceTransferLearningWrapper",
"config": {
"output_class_num": 8,
"encoder_checkpoint": "_outputs_/thwikilm_tfbase12_dec_s2_sp/checkpoint/best_weight.h5",
"train_encoder": true,
"max_input_length": 256,
"drop_out": 0.4,
"cached_data_dir": "_cache_",
"encoder_model": {
"class": "TransformerDecoderOnlyWrapper",
"config": {
"len_limit": 256,
"d_model": 512,
"d_inner_hid": 2048,
"n_head": 8,
"d_k": 512,
"d_v": 512,
"layers": 12,
"dropout": 0.1,
"share_word_emb": true,
"max_input_length": 256,
"cached_data_dir": "_cache_"
}
},
"encoder_dict_dataset": {
"class": "THWIKILMDatasetWrapper",
"config": {
"base_data_dir": "_tmp_"
}
}
}
},
"dataset": {
"class": "TruevoiceDatasetWrapper",
"config": {
"base_data_dir": "_tmp_"
}
},
"input_transform": {
"class": "SentencePieceDictionaryWrapper",
"config": {
"column_id": 0,
"max_dict_size" : 15000,
"clf_pos_offset": -1,
"clf_id": 3,
"mask_last_token": false
}
},
"output_transform": {
"class": "SingleClassTransformWrapper",
"config": {
"column_id": 1
}
},
"callbacks": [
{
"class": "DynamicLearningRateWrapper",
"config": {
"d_model": 512,
"warmup": 50000,
"scale" : 0.25
}
}
],
"execution": {
"config": {
"optimizer": "adam",
"optimizer_params": [0.0001, 0.9, 0.98, 1e-9],
"batch_size": 32,
"epochs": 30,
"watch_metric": "val_acc",
"output_dir": "_outputs_/finetune_thwikilm_tfbase12_dec_s2s_sp_truevoice",
"save_weight_history": false,
"resume_if_possible": true
}
}
}