Skip to content

A Python library to extract tabular data from PDFs

License

Notifications You must be signed in to change notification settings

trifacta/camelot

This branch is 19 commits ahead of, 718 commits behind camelot-dev/camelot:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

73a9c8d · Dec 29, 2022
Sep 7, 2020
May 10, 2021
Oct 17, 2020
Oct 27, 2020
Jan 5, 2019
Jul 4, 2019
Aug 3, 2020
May 24, 2020
Sep 14, 2018
Jul 20, 2020
Jul 27, 2020
Aug 28, 2020
Oct 7, 2018
Nov 23, 2018
Sep 7, 2020
Nov 23, 2018
Dec 29, 2022

Repository files navigation

Camelot: PDF Table Extraction for Humans

Build Status Documentation Status codecov.io image image image Gitter chat image image

Camelot is a Python library that can help you extract tables from PDFs!

Note: You can also check out Excalibur, the web interface to Camelot!


Here's how you can extract tables from PDFs. You can check out the PDF used in this example here.

>>> import camelot
>>> tables = camelot.read_pdf('foo.pdf')
>>> tables
<TableList n=1>
>>> tables.export('foo.csv', f='csv', compress=True) # json, excel, html, sqlite
>>> tables[0]
<Table shape=(7, 7)>
>>> tables[0].parsing_report
{
    'accuracy': 99.02,
    'whitespace': 12.24,
    'order': 1,
    'page': 1
}
>>> tables[0].to_csv('foo.csv') # to_json, to_excel, to_html, to_sqlite
>>> tables[0].df # get a pandas DataFrame!
Cycle Name KI (1/km) Distance (mi) Percent Fuel Savings
Improved Speed Decreased Accel Eliminate Stops Decreased Idle
2012_2 3.30 1.3 5.9% 9.5% 29.2% 17.4%
2145_1 0.68 11.2 2.4% 0.1% 9.5% 2.7%
4234_1 0.59 58.7 8.5% 1.3% 8.5% 3.3%
2032_2 0.17 57.8 21.7% 0.3% 2.7% 1.2%
4171_1 0.07 173.9 58.1% 1.6% 2.1% 0.5%

Camelot also comes packaged with a command-line interface!

Note: Camelot only works with text-based PDFs and not scanned documents. (As Tabula explains, "If you can click and drag to select text in your table in a PDF viewer, then your PDF is text-based".)

Why Camelot?

  • Configurability: Camelot gives you control over the table extraction process with its tweakable settings.
  • Metrics: Bad tables can be discarded based on metrics like accuracy and whitespace, without having to manually look at each table.
  • Output: Each table is extracted into a pandas DataFrame, which seamlessly integrates into ETL and data analysis workflows. You can also export tables to multiple formats, which include CSV, JSON, Excel, HTML and Sqlite.

See comparison with similar libraries and tools.

Support the development

If Camelot has helped you, please consider supporting its development with a one-time or monthly donation on OpenCollective.

Installation

Using conda

The easiest way to install Camelot is with conda, which is a package manager and environment management system for the Anaconda distribution.

$ conda install -c conda-forge camelot-py

Using pip

After installing the dependencies (tk and ghostscript), you can also just use pip to install Camelot:

$ pip install "camelot-py[cv]"

From the source code

After installing the dependencies, clone the repo using:

$ git clone https://www.github.com/camelot-dev/camelot

and install Camelot using pip:

$ cd camelot
$ pip install ".[cv]"

Documentation

The documentation is available at http://camelot-py.readthedocs.io/.

Wrappers

Contributing

The Contributor's Guide has detailed information about contributing issues, documentation, code, and tests.

Versioning

Camelot uses Semantic Versioning. For the available versions, see the tags on this repository. For the changelog, you can check out HISTORY.md.

License

This project is licensed under the MIT License, see the LICENSE file for details.

About

A Python library to extract tabular data from PDFs

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.7%
  • Makefile 0.3%