Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MultiModalMarginRankingCriterion.lua #1136

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 132 additions & 0 deletions MultiModalMarginRankingCriterion.lua
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
local MultiModalMarginRankingCriterion, parent =
torch.class('nn.MultiModalMarginRankingCriterion', 'nn.Criterion')

-- loss(x, y) = max(0, -y * (x[1] - x[2]) + margin) +
-- max(0, -y * (x[1] - x[3]) + margin)

function MultiModalMarginRankingCriterion:__init(margin)
parent.__init(self)
margin=margin or 1
self.margin = margin
self.gradInput = {torch.Tensor(1), torch.Tensor(1), torch.Tensor(1)}
self.sizeAverage = true
end

function MultiModalMarginRankingCriterion:updateOutput(input, y)
if torch.type(y) == 'number' then -- non-batch mode
--self.output = math.max(0, -y * (input[1][1] - input[2][1]) + self.margin)
self.output = math.max(0, -y * (input[1][1] - input[2][1]) + self.margin)
+ math.max(0, -y * (input[1][1] - input[3][1]) + self.margin)
else

self._output1 = self._output1 or input[1]:clone()
self._output1:resizeAs(input[1])
self._output1:copy(input[1])
self._output2 = self._output1:clone()

-- max(0, -y * (x[1] - x[2]) + margin) +
self._output1:add(-1, input[2])
self._output1:mul(-1):cmul(y)
self._output1:add(self.margin)

self._output1:cmax(0)

-- max(0, -y * (x[1] - x[3]) + margin)
self._output2:add(-1, input[3])
self._output2:mul(-1):cmul(y)
self._output2:add(self.margin)

self._output2:cmax(0)


self.output = self._output1:sum() + self._output2:sum()

if self.sizeAverage then
self.output = self.output/y:size(1)
end
end

return self.output
end




-- loss(x, y) = max(0, -y * (x[1] - x[2]) + margin) +
-- max(0, -y * (x[1] - x[3]) + margin)

function MultiModalMarginRankingCriterion:updateGradInput(input, y)
if torch.type(y) == 'number' then -- non-batch mode
--local dist = -y * (input[1][1] - input[2][1]) + self.margin
local dist1 = -y * (input[1][1] - input[2][1]) + self.margin
local dist2 = -y * (input[1][1] - input[3][1]) + self.margin

if dist1 < 0 then
self.gradInput[1][1] = 0;
self.gradInput[2][1] = 0;
else
self.gradInput[1][1] = -y
self.gradInput[2][1] = y
end

if dist2 < 0 then
self.gradInput[1][1] = 0 + self.gradInput[1][1];
self.gradInput[3][1] = 0;
else
self.gradInput[1][1] = -y + self.gradInput[1][1];
self.gradInput[3][1] = y
end

else
self.dist1 = self.dist1 or input[1].new()
self.dist1 = self.dist1:resizeAs(input[1]):copy(input[1])
local dist1 = self.dist1
self.dist2 = self.dist1:clone()
local dist2 = self.dist2

dist1:add(-1, input[2])
dist1:mul(-1):cmul(y)
dist1:add(self.margin)

dist2:add(-1, input[3])
dist2:mul(-1):cmul(y)
dist2:add(self.margin)

self.mask1 = self.mask1 or input[1].new()
self.mask1 = self.mask1:resizeAs(input[1]):copy(dist1)
local mask1 = self.mask1

self.mask2 = self.mask2 or input[1].new()
self.mask2 = self.mask2:resizeAs(input[1]):copy(dist2)
local mask2 = self.mask2

mask1:ge(dist1, 0)
mask2:ge(dist2, 0)

self.gradInput[1]:resize(dist1:size())
self.gradInput[2]:resize(dist1:size())
self.gradInput[3]:resize(dist2:size())

self.gradInput[1]:copy(mask1)
self.gradInput[1]:mul(-1):cmul(y)
self.gradInput[2]:copy(mask1)
self.gradInput[2]:cmul(y)

local gradInput_ = self.gradInput[1]:clone()
gradInput_:copy(mask2)
gradInput_:mul(-1):cmul(y)
self.gradInput[1]:add(gradInput_)
self.gradInput[3]:copy(mask2)
self.gradInput[3]:cmul(y)


if self.sizeAverage then
self.gradInput[1]:div(y:size(1))
self.gradInput[2]:div(y:size(1))
self.gradInput[3]:div(y:size(1))
end

end
return self.gradInput
end