🔥 Contributions:
-
Momentum Planning Concept. We propose the concept of momentum planning in multi-modal trajectory planning, drawing an analogy to human driving behavior. We provide theoretical evidence to demonstrate the effectiveness of our momentum planning in addressing temporal consistency in end-to-end autonomous driving
-
MomAD Framework. We propose MomAD, an end-to-end autonomous driving framework that employs momentum planning. It optimizes current trajectory planning by integrating historical planning guidance, significantly improving trajectory consistency and stability in autonomous driving.
-
Turning NuScenes Validation Dataset. We create the Turning-nuScenes val dataset, derived from the nuScenes full validation dataset. This new dataset focuses on turning scenarios, providing a specialized benchmark for evaluating the performance of autonomous driving systems in complex driving situations.
-
Trajectory Prediction Consistency (TPC) Metric. We introduce the TPC metric to quantitatively assess the consistency of trajectory predictions in existing end-to-end autonomous driving methods, addressing a critical gap in the evaluation of trajectory planning.
-
Performance Evaluation. Through extensive experiments on the nuScenes dataset, we demonstrate that MomAD significantly outperforms SOTA methods in terms of trajectory consistency and stability, highlighting its effectiveness in tackling challenges within autonomous driving planning. We evaluated the results of long trajectory predictions, specifically at 4, 5, and 6 seconds, which are critical for ensuring the stability of autonomous driving systems.
- Planning results on nuScenes.
Method | Backbone | L2 (m) 1s | L2 (m) 2s | L2 (m) 3s | L2 (m) Avg | Col. (%) 1s | Col. (%) 2s | Col. (%) 3s | Col. (%) Avg | TPC (m) 1s | TPC (m) 2s | TPC (m) 3s | TPC (m) Avg | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniAD | ResNet101 | 0.45 | 0.70 | 1.04 | 0.73 | 0.62 | 0.58 | 0.63 | 0.61 | 0.41 | 0.68 | 0.97 | 0.68 | 1.8 (A100) |
SparseDrive | ResNet50 | 0.29 | 0.58 | 0.96 | 0.61 | 0.01 | 0.05 | 0.18 | 0.08 | 0.30 | 0.57 | 0.85 | 0.57 | 9.0 (4090) |
MomAD (Ours) | ResNet50 | 0.31 | 0.57 | 0.91 | 0.60 | 0.01 | 0.05 | 0.22 | 0.09 | 0.30 | 0.53 | 0.78 | 0.54 | 7.8 (4090) |
- Planning results for long trajectory prediction on nuScenes. We train 10 epochs on 6s trajectories and test on 6s trajectories.
Method | L2 (m) 4s | L2 (m) 5s | L2 (m) 6s | Col. (%) 4s | Col. (%) 5s | Col. (%) 6s | TPC (m) 4s | TPC (m) 5s | TPC (m) 6s |
---|---|---|---|---|---|---|---|---|---|
SparseDrive | 1.75 | 2.32 | 2.95 | 0.87 | 1.54 | 2.33 | 1.33 | 1.66 | 1.99 |
MomAD (Ours) | 1.67 | 1.98 | 2.45 | 0.83 | 1.43 | 2.13 | 1.19 | 1.45 | 1.61 |
- Planning results on the Turning-nuScenes validation dataset Turning-nuScenes . We train 10 epochs on 6s trajectories and test on 6s trajectories.
Method | L2 (m) 1s | L2 (m) 2s | L2 (m) 3s | Col. (%) 1s | Col. (%) 2s | Col. (%) 3s | TPC (m) 1s | TPC (m) 2s | TPC (m) 3s |
---|---|---|---|---|---|---|---|---|---|
SparseDrive | 0.35 | 0.77 | 1.46 | 0.86 | 0.04 | 0.17 | 0.98 | 0.40 | 0.34 |
MomAD (Ours) | 0.33 | 0.70 | 1.24 | 0.76 | 0.03 | 0.13 | 0.79 | 0.32 | 0.32 |
- Open-loop and Closed-loop Results of E2E-AD Methods in Bench2Drive (V0.0.3)} under base training set. `mmt' denotes the extension of VAD on Multi-modal Trajectory. * denotes our re-implementation. The metircs momad used follows Bench2Drive
Method | Open-loop Metric | Closed-loop Metric | |||
---|---|---|---|---|---|
Avg. L2 ↓ | DS ↑ | SR(%) ↑ | Effi ↑ | Comf ↑ | |
VAD | 0.91 | 42.35 | 15.00 | 157.94 | 46.01 |
VAD mmt* | 0.89 | 42.87 | 15.91 | 158.12 | 47.22 |
Our MomAD (Euclidean) | 0.84 | 46.12 | 17.45 | 173.35 | 50.98 |
Our MomAD | 0.85 | 45.35 | 17.44 | 162.09 | 49.34 |
SparcDrive* | 0.87 | 44.54 | 16.71 | 170.21 | 48.63 |
Our MomAD (Euclidean) | 0.84 | 46.12 | 17.45 | 173.35 | 50.98 |
Our MomAD | 0.82 | 47.91 | 18.11 | 174.91 | 51.20 |
- Robustness analysis on nuScenes-C
Setting | Method | Detection | Tracking | Mapping | Motion | Planning | |||
---|---|---|---|---|---|---|---|---|---|
mAP ↑ | NDS ↑ | AMOTA ↑ | mAP ↓ | mADE ↓ | L2 ↓ | Col. ↓ | TPC ↓ | ||
Clean | SparseDrive | 0.418 | 0.525 | 0.386 | 55.1 | 0.62 | 0.61 | 0.08 | 0.57 |
Clean | Our MomAD | 0.423 | 0.531 | 0.391 | 55.9 | 0.61 | 0.60 | 0.09 | 0.54 |
Snow | SparseDrive | 0.091 | 0.111 | 0.102 | 16.0 | 0.98 | 0.88 | 0.32 | 0.82 |
Snow | Our MomAD | 0.154 | 0.173 | 0.166 | 20.9 | 0.76 | 0.73 | 0.16 | 0.68 |
Fog | SparseDrive | 0.141 | 0.159 | 0.154 | 18.8 | 0.91 | 0.86 | 0.41 | 0.80 |
Fog | Our MomAD | 0.197 | 0.197 | 0.206 | 24.9 | 0.73 | 0.71 | 0.18 | 0.67 |
Rain | SparseDrive | 0.128 | 0.140 | 0.193 | 19.4 | 0.97 | 0.93 | 0.46 | 0.92 |
Rain | Our MomAD | 0.207 | 0.213 | 0.266 | 25.2 | 0.76 | 0.71 | 0.21 | 0.71 |
To evaluate the planning stability of MomAD, we propose a new Trajectory Prediction Consistency (TPC) metric to measure consistency between predicted and historical trajectories.
python tools/data_converter/nuscenes_converter_6s.py nuscenes \
--root-path ./data/nuscenes \
--canbus ./data/nuscenes \
--out-dir ./data/infos/ \
--extra-tag nuscenes \
--version v1.0